Facebook Twitter LinkedIn YouTube Menu Search Arrow Right Arrow Left Arrow Down Arrow Up Home Arrow Next Arrow Previous RSS Icon Calendar Icon Warning Icon
NOTICE: The EASA office will be closed Dec. 24, 2024 - January 1, 2025. Technical support will still be available. For quickest response, please use the online support forms or send your inquiry to technicalsupport@easa.com.
EMAIL GENERAL INQUIRY REDESIGN REQUEST

Filter the results

  • Enter one or more words to find resources containing any of the words entered
  • Enter words or phrases between " " to find exact match

Resource categories

Resource Library

Improving designs in motors with multiple windings: Concentric or a conventional half-slot lap winding will help

  • July 2012
  • Number of views: 5566
  • Article rating: 4.4
Article

One of the pleasures of helping EASA members is in discovering challenges or specific areas where we can improve on the original design of the motor manufacturer. The most recent of these, for me, has been a noticeable cluster of calls about motors with multiple windings. The call usually starts with something like this: "We wound this motor, and one speed was terribly burned." Another one I often hear is: "We rewound both speeds, and the surge test pattern for one speed indicates a winding problem." These are but a couple of examples of a design issue we are seeing with motors having more than one winding. While the use of variable-frequency drives (VFDs) is increasingly common, there are still applications using 2-speed, 2-winding motors. Cranes are a good example of one such application. When a core has more than one winding, the two windings behave as a transformer. Applying voltage to either winding induces voltage in the other winding because the two windings are inductively coupled. As long as both windings are connected 1 wye, and the leads of the second winding are left open, no magnetizing current is drawn by the second winding. When both windings are conventional and symmetrical, this arrangement works just fine. The problems start when either winding deviates from the symmetry that is so important to 3-phase motor performance.

Topics covered include:

  • Transformer effect
  • Visualizing the current flow
  • Parallel circuits

Getting The Most From Your Electric Motors

Getting The Most From Your Electric Motors - coverThis 40-page booklet provides great advice for obtaining the longest, most efficient and cost-effective operation from general and definite purpose electric motors.

This booklet covers topics such as:

  • Installation, startup and baseline information
  • Operational monitoring and maintenance
  • Motor and baseline installation data
  • How to read a motor nameplate
  • Motor storage recommendations

LEARN MORE AND DOWNLOAD MÁS INFORMACIÓN Y DESCARGAR BUY PRINTED COPIES

READ MORE ABOUT THE FEATURES AND BENEFITS

EASA/AEMT Rewind Study

EASA Rewind Study cover

The Effect of Repair/Rewinding on Premium Efficiency/IE3 Motors
Tests prove Premium Efficiency/IE3 Motors can be rewound without degrading efficiency.

DOWNLOAD THE FULL RESULTS

ANSI/EASA AR100-2020

ANSI/EASA AR100-2015 cover

Recommended Practice for the Repair of Rotating Electrical Apparatus
This is a must-have guide to the repair of rotating electrical machines. Its purpose is to establish recommended practices in each step of the rotating electrical apparatus rewinding and rebuilding processes.

DOWNLOAD - ENGLISH

DESCARGAR - ESPAÑOL

EASA Technical Manual

EASA Technical Manual cover

Revised May 2024
The EASA Technical Manual is the association's definitive and most complete publication. It's available FREE to members in an online format. Members can also download PDFs of the entire manual or individual sections.

VIEW & DOWNLOAD