Want to Know More?
Tyler Voss Membership & Communications Specialist+1 314 993 2220tvoss@easa.com
SEND ME MORE INFORMATIONJOIN EASA
SEARCH THE RESOURCE LIBRARY
Try Asking Eddy!EASA's AI assistant is ready to help 24/7/365 in the language of your choice.
EASA.COM/EDDY
REGISTER FOR UPCOMING TRAINING
GO TO LEARNING CENTERLEARN MORE FAQsBUY RENEWVIEW/MANAGE ENROLLMENT INFO
Need an Accredited service center?Find a service center that has proven they repair electric motors in accordance with ANSI/EASA's AR100.
VIEW THE LISTLEARN MORE ABOUT THE PROGRAM
DOWNLOAD ACCREDITATION CHECKLISTACCREDITED? VIEW YOUR RECORDS
Exhibit in 2026!Make sure your company is represented in the industry's premeire networking and education event.
LEARN MORE
SPEAKERS' PORTAL
Engage locallyEASA's international membership is divided into 10 Regions that are made up of 32 Chapters.
EXPLORE CHAPTERS & EVENTS NEAR YOUCHAPTER OFFICER RESOURCES
SEARCH THE ONLINE STORE
CUSTOM BRANDED PRODUCTSDOWNLOADS YOU HAVE PURCHASEDVIEW YOUR PURCHASED TRAININGVIEW CONVENTION RECORDINGS
Mike Howell EASA Technical Support Specialist
Relevant standards including IEC 60085 and IEEE 1 have similar definitions for electrical insulating materials (EIM) and electrical insulation systems (EIS). To summarize, EIM are materials suitable for separating conducting parts at different voltages, and EIS are insulating structures containing one or more of these materials.
As with any system, there is an interaction between the materials used, and the insulation system developers take great care to ensure that this interaction does not lead to undesirable outcomes. For example, it is possible for two materials (EIM) classified individually at thermal class H (180°C) to have thermal endurance in a system (EIS) limited to thermal class F (155°C). Far worse outcomes could exist if material compatibility is an issue. At the service center level, our resources are generally insufficient for these types of insulation system development activities. For this reason, two approaches often seen are (1) relying on a third party (e.g., resin manufacturer) to provide a qualified insulation system bill of materials, or (2) applying commonly used materials based on their individual ratings. The first approach is strongly recommended, and the second approach can lead to disaster.
LOGIN TO VIEW AND DOWNLOAD THE ARTICLE