Fundamental to every good mechanical repair is the ability to disassemble, repair and reassemble the motor correctly without unnecessary damage to any of the motor parts. This sounds simple, and yet too many costly mistakes are made in this process of taking things apart. If every motor repaired was in “as new” condition, the task would be much simpler. But this would be no guarantee that the reassembly would be correct.
There is usually an easy way and a hard way to remove and install parts. Brute force is seldom the easiest or the correct way. The old saying of “don’t force it, get a bigger hammer” is seldom the best way.
When a service center is paid to repair equipment, the service center wants it to stay in operation. If the equipment fails again—within the warranty period—the service center pays to repair it again. It makes sense to repair it correctly the first time.
In order to improve equipment, it is important to know how and where it operates. Without understanding why a motor fails, it is impossible to deliberately improve its mean time between failures.
To do this, there must be communication between the service center and the motor user. Not only does this help the repairer decide the best course of action, but it helps the user appreciate the professionalism of the service center.
Repair procedures, like motors themselves, are affected by changes in technology. This book attempts to include the latest proven technologies. Time-honored methods of repair, in many cases, may still be the most practical option. Options presented throughout this book are intended to help the technician select the appropriate repair method, recognizing that the ultimate decision rests with the equipment owner.
Repair methods sometimes fall into disfavor, not because better methods are introduced, but because of poor techniques. Other repair methods are well-suited to some applications but not to others. It is the job of the repairer to decide what is the best method for each case.
This book is divided into sections for basic motor components with repair methods and tips dispersed throughout. Where practical, reasons for failures are also discussed. These will aid the technician in selecting the most appropriate method of repair for each unique application.
The information presented draws from EASA publications, IEEE publications, technical journals and literature supplied by vendors, motor manufacturers and established service centers.
This book contains many suggestions on how to correctly handle the various parts of a motor during the repair process so as to minimize damage. However, it is impossible to develop an all-inclusive list. Instead, the basic principle of taking the time to use the correct tool and correct procedure will usually lead the technician down the right path. Always remember, if it has to be forced beyond reason, it might be that neither the proper tool or procedure is being used or something is wrong with the parts. Step back and ask “What am I overlooking?”
Table of Contents
- Motor Nomenclature
- Motor Applications and Enclosures
- Test and Inspection Procedures
- Motor Disassembly Tips
- Bearings
- Bearing Housing Repair, Shaft Openings, Seals and Fits
- Shafts
- Rotors
- Motor Assembly
- Motor Accessories and Terminal Boxes
- Motor Dynamics
- Vibration and Motor Geometry
- Shaft/Bearing Currents
- Special Considerations for Explosion-Proof Motors
- Failures in Mechanical Components
- Miscellaneous Repairs
This book is available as part of EASA's Fundamentals of Mechanical Repair seminar.
BUY A COPY
BOOK DOWNLOAD CD-ROM BOOK & CD-ROM
ANSI/EASA AR100
More information on this topic can be found in ANSI/EASA AR100- Section 2: Mechanical repair
EASA Technical Manual
More information on this topic can be found in EASA's Technical Manual- Section 2: AC Machines
- Section 3: DC Machines
- Section 10: Mechanical
Print