Facebook Twitter LinkedIn YouTube Menu Search Arrow Right Arrow Left Arrow Down Arrow Up Home Arrow Next Arrow Previous RSS Icon Calendar Icon Warning Icon

How to schedule

To schedule private education for your group, contact:

Dale Shuter, CMP
Meetings & Expositions Manager

+1 314 993 2220, ext. 3335
dshuter@easa.com

1 hour of training

$300 for EASA Chapters/Regions
$400 for member companies
$800 for non-members

How a webinar works

All EASA private webinars are live events in which the audio and video are streamed to your computer over the Internet. Prior to the program, you will receive a web link to join the meeting. 

The presentation portion of the webinar will last about 45 minutes, followed by about 15 minutes of questions and answers.

Requirements

  • Internet connection
  • Computer with audio input (microphone) and audio output (speakers) appropriate for your size group
  • TV or projector/screen

Zoom logo

The Zoom webinar service EASA uses will ask to install a small plugin. Your computer must be configured to allow this in order to have full functionality. Please check with your IT department or company's security policy prior to scheduling a private webinar.

Private Webinars

EASA's private webinars are an inexpensive way to bring an EASA engineer into your service center, place of business or group meeting without incurring travel expenses or lost production time.

¡Cuidado con los PCBs! (Bifenilos policlorados)

¡Cuidado con los PCBs! (Bifenilos policlorados)

Dale Hamil
Miembro del Comité de Educación Técnica
Illinois Electric Works

Los bifenilos policlorados (PCB) son un grupo de sustancias químicas artificiales, líquidos o sólidos aceitosos, de color claro a amarillo, con poco o ningún olor o sabor, y que son mezclas estables resistentes a temperaturas y presiones extremas. La principal empresa que fabricaba PCB en los Estados Unidos era Monsanto Inc., utilizando principalmente el nombre Aroclor; sin embargo, muchas empresas fabricaron sus propias marcas y la lista de las mismas se puede encontrar en este artículo.

Los bifenilos policlorados se utilizaron ampliamente como fluidos dieléctricos y refrigerantes en transformadores, interruptores, condensadores, electroimanes, fluidos de corte para operaciones de mecanizado y en fluidos para transferencia de calor. Incluso se usaron en algunos papeles para copias sin carbón. Se sabe que los aisladores llenos de aceite en transformadores de más de 69 kV a menudo contienen PCB. Debido a la toxicidad ambiental y la clasificación como contaminante orgánico persistente, la producción de PCB fue prohibida por el Congreso de los Estados Unidos en 1979 y por el Convenio de Estocolmo sobre contaminantes orgánicos persistentes en 2001.

Available Downloads

¿Dientes Torcidos? ¡Tenemos Ortodoncia!

¿Dientes Torcidos? ¡Tenemos Ortodoncia!

Cómo el usar discos de retención al tirar del alambre magneto previene doblar los dientes de las laminaciones

David Sattler
L&S Electric, Inc.

A no ser que se tenga mucho cuidado, tirar del alambre magneto al desmantelar el estator de un motor a menudo deforma o dobla los dientes de las laminaciones. Estos dientes deformados comprometerán la calidad de la reparación y hay estudios que demuestran que este problema puede reducir la eficiencia del motor. Sin embargo, aunque esta reducción puede ser pequeña, genera altos costos y desperdicio de energía.

Aunque los clientes rara vez notan la merma del rendimiento, nuestro objetivo durante la reparación de los motores es siempre llevar a cabo rebobinados de la más alta calidad posible. Por lo tanto, hemos diseñado e implementado el uso de discos (platos) retenedores para mantener los dientes del estator en su lugar mientras se saca el alambre magneto de las ranuras. Los discos que se ven en las fotografías nos han ayudado a evitar y garantizar dañar los dientes del estator al sacar el alambre del estator.

Available Downloads

¿Qué Novedades Hay en las Máquinas de Flujo-Axial?

¿Qué Novedades Hay en las Máquinas de Flujo-Axial?

Mike Howell, PE
Especialista de Soporte Técnico de EASA

La mayoría de los centros de servicio de EASA encuentran muy pocas máquinas de flujo axial. Son tan raras, que vale la pena describir qué son y como se diferencian del típico motor o generador industrial de flujo radial. La Figura 1 muestra un corte de una máquina de flujo axial a la izquierda y una máquina de flujo radial a la derecha. Las zonas doradas representan los devanados del estator energizados y las verdes los bobinados del rotor o imanes permanentes. Tenga en cuenta que la máquina de flujo axial que se muestra tiene dos rotores; un devanado de rotor a cada lado del estator. La máquina de flujo radial es a lo que están acostumbrados la mayoría de los centros de servicio de EASA; un rotor separado de un estator por un entrehierro en dirección radial y un campo magnético que cruza ese entrehierro para vincular ambos devanados (o devanados e imanes permanentes) de manera que puedan producir un torque útil.

Available Downloads

5 Marketing Tactics When You Need Results in a Time Crunch

5 Marketing Tactics When You Need Results in a Time Crunch

Kelley Fujino
Marketing & Industry Awareness Committee Member
Lubbock Electric Co.

What is the most valuable resource that your business can never make, buy or recruit more of? Time! This is especially true for busy EASAns that are simultaneously CEO, COO and CMO (chief marketing officer) for their companies. Here are five tactics that you can implement quickly and easily when you need to move the needle in a short period of time.

Available Downloads

A closer look: Winding protection device can prevent permanent damage to motor

A closer look: Winding protection device can prevent permanent damage to motor

Cyndi Nyberg
Former EASA Technical Support Specialist 

There are a number of different types of wind­ing protection devices used with motors. However, they all basically do the same thing; they sense a change from the normal operating temperature and either sound an alarm or take the motor off line when the specified temperature limit has been met or exceeded. 

Temperature protection is not limited to just large motors. A smaller motor that is critical to op­eration would be a good candidate for winding temperature protection if a failure would cause significant costs due to downtime. 

Available Downloads

A Simple Approach to Duty Ratings of AC Machines

A Simple Approach to Duty Ratings of AC Machines

Matthew Conville, P.E.
EASA Technical Support Specialist

When we consider putting a machine into service, we must consider the duty rating of the machine. If we do not, there is a good chance that the machine being placed into service will have thermal degradation of the windings. Not every application is created equal. For example, a crane motor doesn’t need the same duty rating as a punch press motor that runs continuously, even though they may have the same horsepower ratings. Likewise, a chop saw motor wouldn’t need to have the same duty rating as a pump motor where the pump is operated continuously.

Available Downloads

AC Electric Motor Design

AC Electric Motor Design

6
presentations
$30
for EASA members

 

A special discounted collection of 6 webinar recordings focusing on AC electric motor design.

Once purchased, all 6 recordings will be available on your "Downloadable products purchased" page in your online account.

Downloadable recordings in this bundle include:

The Basics: AC Motor Design
Presented July 2016

This webinar recording covers: 

  • Various types of AC motors and bases for operation
  • Squirrel cage induction motor rotor design / construction
  • Squirrel cage induction motor stator design / construction

How Winding Changes Affect Motor Performance
Presented January 2019

This webinar recording focuses on the effect of three-phase stator winding changes on efficiency and reliability.

Specific changes addressed will include:

  • Connection
  • Circuits
  • Turns
  • Span/pitch
  • Grouping sequence
  • Concentric to lap, and vice versa
  • Wire area per turn and per slot

Target audience: Service center technicians and supervisors.


Motor Starting Capabilities and Considerations
Presented March 2014

This webinar addresses the topic of a three phase squirrel cage motor’s ability to successfully accelerate a driven load. Although a motor can drive a running load, that is not assurance that it has the capability to accelerate the load up to rated speed. The difference between success and failure is determined by some complex conditions. For example, the motor torque during starting is not constant, and unless the load is a pure inertia load (very rare), it does not have a constant speed-torque relationship. Key considerations addressed include acceleration time, acceleration torque, motor heating, stator and rotor limits, and torque variables.

Target audience: This presentation will be most useful for service center sales personnel, engineers, supervisors and managers. The content will be beneficial for moderate through highly experienced persons.


AC Motor Redesign: Speed Changes
Presented January 2015

This presentation focuses on AC motor redesigns involving speed changes. Service centers encounter scenarios such as the procurement of a single-speed motor that must be redesigned for two speeds or redesign of an existing two-speed motor for use on an adjustable-speed drive.

Topics covered include:

  • Single-speed, one-winding to two-speed, one-winding
  • Single-speed, one-winding to two-speed, two-winding
  • Two-speed, two-winding to single-speed, one-winding
  • Two-speed, one-winding to single-speed, one-winding

The redesign examples are performed using EASA’s AC Motor Verification & Redesign program, including use of the integrated motor winding database for locating comparative data. Examples will include other changes such as voltage, frequency and horsepower.


Magnetic Wedges
Presented January 2019

An increasing number of manufacturers are using magnetic wedges in their form-wound machines. When a winder fails to replace magnetic wedges in kind, the winding temperature rise can increase by 20°C, and the magnetizing current can increase by 20% or more.

This recording explains why they are used, provides a balanced review of the benefits and negative issues associated with their use, and explains how to avoid the problems.

  • Why some manufacturers use magnetic wedges
  • Benefits of magnetic wedges
  • Downside of magnetic wedges
  • Fitting and installation to prevent them from falling out in service

Target audience: This will benefit service center technicians and supervisors.


Speed/Torque Curves
Presented March 2017

This recording covers:

  • Starting torque
  • Breakdown torque
  • Full load torque
  • Speed current curve
  • Load torque curve
  • Impact of reduced voltage start (autotransformer, PWS, wye-delta)
  • Slot combination problems (noise, torque cusp, cogging)

It is very important to understand speed/torque curves and how they impact motor operation.

Target audience: Engineers, mechanics, winders and sales persons with fundamental knowledge of motor operation. 

AC Motor Electrical Procedures

AC Motor Electrical Procedures

11
presentations
$55
for EASA members

 

A special discounted collection of 11 webinar recordings focusing on AC motor electrical procedures.

Once purchased, all 11 recordings will be available on your "Downloadable products purchased" page in your online account.

Downloadable recordings in this bundle include:

The Basics: Motor Repair Burnout Procedures
Presented October 2016

  • Interlaminar insulation materials / properties of AC stators
  • Core testing before and after
  • Processing equipment, controls and records

The Basics: The Why and How of Core Testing
Presented October 2016

  • The reasons for performing core testing and why they are important
  • An explanation of the two core testing methods:
  • Loop testing
  • Use of a core tester
  • How to properly perform a core test
  • How to assess the results
  • Stator Core Testing: Know What You Have Before You Wind It

Stator Core Testing: Know What You Have Before You Wind It
Presented April 2017

This presentation covers:

  • The importance of the stator core test 
  • Simple theory to share with technicians and customers 
  • Practical approach for testing small stators demonstrated 
  • Eliminating pen + paper; loop test calculations for any device 
  • Assessing the results

High Potential Testing of AC Windings
Presented December 2019

High-potential testing is routinely used to assess the ground insulation of AC stator windings in-process, after completion of a rewind and post-delivery. This webinar covers:

  • Differences between AC and DC high-potential tests
  • Sizing AC test sets when testing large windings
  • What relevant standards address (and what they don’t)
  • Communicating test requirements to all stakeholders
  • When to test and at what levels
  • How to evaluate results

Target audience: Beneficial for service center managers, supervisors and technicians responsible for high-potential testing.


Squirrel Cage Rotor Testing
Presented October 2014

Determining whether or not a squirrel cage rotor is defective is an issue that is a challenge to every service center as there is often no simple way to determine the integrity of a rotor. The primary focus of this session is to describe many of the available tests that can be utilized in the service center or at the motor installation site. In addition to conventional squirrel cage rotor testing methods such as the growler test, techniques that will also be covered are the use of a core loss tester, high current excitation, and spectrum analysis of vibration.

Target audience: This presentation will be most useful for service center and field technicians with at least 2 years experience, service center supervisors and managers, engineers, or anyone with previous experience dealing with suspected open rotor issues.


Evaluating High No-Load Amps of Three-Phase Motors
Presented December 2011

This presentation focuses on the steps to take before rewinding to avoid the undesirable situation of high no-load motor amps after the rewind.

The presentation covers the following steps that should be performed on every AC stator rewind:

  • Inspect the stator bore and rotor outside diameter for evidence of machining or damage
  • Record the original winding data exactly as found
  • Verify the winding data
  • Test the stator core before and after rewinding removal

Target audience: This is most useful for service center mechanics and winders with any level of experience, and service center supervisors and managers.


Insulation Technology Improvements and the Repair Market
Presented July 2019

Most modern rotating electric machines operate on the same principles their predecessors have for 100+ years. However, improvements in materials technology over that time have allowed for increasingly greater power density in machine design.

There is a natural time lag between OEM technology improvement and repair of equipment containing that technology. This session will explore some of these improvements and their implications for service centers attempting to provide a quality repair.

Target audience: This webinar will be appropriate for service center managers and technicians responsible for rewind activities.


Motor Temperature Rise and Methods to Increase Winding Life
Presented December 2018

This webinar discusses:

  • Temperature rise: Method of detection, Insulation class, Enclosure, and Service Factor
  • Increasing winding life: Insulation class, Cooling system, and Winding redesign

Target audience: This will be most useful for service center engineers, supervisors, managers and owners. The content will also be beneficial for mechanics and winders.


Air Gap: What It Is, What Does It Do, and Why Is It Important?
Presented October 2019

The physical air gap between the rotor or armature and the stator or field frame is complex and plays a critical role in the performance of AC and DC machines. Most repairers do not realize how little they understand about this subject.

This webinar explains the role air gap plays in AC motor performance, how to recognize the symptoms of an uneven air gap, and share corrective measures. For DC machines, this webinar will cover the distinctly different role of the field air gap as opposed to the air gap of the interpoles.

  • Air gap tolerance of AC machines
  • Air gap tolerance of DC fields and interpoles
  • Allowable runout of rotor / armature
  • Recognizing the signs of air gap anomalies
  • Corrective actions

Target audience: This webinar recording is of benefit to managers, supervisors, winders, mechanics and field service personnel.


Troubleshooting AC Generators & Alternators
Presented May 2015

This recording covers theory of operation, inspection, operation and troubleshooting tips for AC generators and alternators. For the supervisor, field service technician or service center personnel, generators can present unique challenges. Topics covered include:

  • Theory of operation
  • Testing tips
  • Stator winding cautions
  • How to interpret the exciter motor connection
  • In-shop and on-site testing methods
  • How to test the voltage regulator
  • How to test a generator without a regulator

Core Repair and Restack Techniques
Presented April 2014

This webinar teaches:

  • How to repair damaged stator cores and how to know when a restack is necessary.
  • There are often cases when repairs can be accomplished without a labor intensive restack.
  • When a restack is required, there are pitfalls to watch out for to avoid problems with geometry, vibration and core losses.

Target audience: This presentation is useful to the supervisor, winder and sales personnel who interact with the end user.

AC Stator Form Coil Data Sheet

AC Stator Form Coil Data Sheet

This handy form provides fields to record all of the details needed to document and/or order replacement coils for an AC form-wound machine. The form also includes detailed descriptions/definitions of the data to be recorded in each field.

Available Downloads

Ajuste de Los Cojinetes de Deslizamiento

Ajuste de Los Cojinetes de Deslizamiento

Chuck Yung
Especialista Sénior de Soporte Técnico de EASA

Cuando se rebabitan o se reemplazan cojinetes de deslizamiento, un paso importante durante el montaje consiste en verificar el contacto entre el cojinete y el muñón del eje que monta sobre el. El uso de cojinetes de deslizamiento auto alineables (también denominados esféricos o de ajuste esférico) hace que este paso sea casi innecesario. Aun así, los cojinetes de deslizamiento cilíndricos se deben inspeccionar para verificar que haya suficiente área de contacto.

Los cojinetes de deslizamiento, también conocidos como cojinetes de babbitt, de metal blanco o cojinetes lisos, han sido utilizados por más de 150 años. Para una explicación detallada sobre el diseño y funcionamiento de los cojinetes de deslizamiento solicite a EASA el documento de la convención del 2007: “Sleeve Bearing Repair Tips,” o el libro Mechanical Repair Fundamentals of Electric Motors, 2nd Edition.

Este es un artículo específico para verificar y corregir el patrón de desgaste al momento de instalar cojinetes nuevos en un motor eléctrico. Ajustar cojinetes no es difícil, solo se requiere algún conocimiento básico, Un parte interesante de la historia es el kit de herramientas suministrado con el antiguo automóvil Ford -Modelo A, que incluía un cuchillo para babbitt para rascar los cojinetes del cigüeñal. Imagine desmontar el motor de su auto en el camino, para retirar y ajustar los cojinetes de babbitt.

Available Downloads

An overview of financial performance in distribution

An overview of financial performance in distribution

Dr. Al Bates, President
The Profit Planning Group
Boulder, Colorado

The accompanying set of exhibits provides an overview of financial trends in distribution between 2005 and 2009. It places special emphasis on the changes between 2008 and 2009. The information related to EASA comes from data provided by partici­pants in the Operating Performance Survey.  

The analysis covers 34 different lines of trade in distribution. In devel­oping such a macro-view of distribu­tion, it is not possible to compare most financial ratios directly. For example, some industries have a high gross mar­gin and accompanying high expenses, while others have a low gross margin and low expenses.

Available Downloads

Angular Contact Bearings: Types, Classifications and Applications

Angular Contact Bearings: Types, Classifications and Applications

Toshiba International Corp.Presented by Gene Vogel
EASA Pump & Vibration Specialist

This webinar recording reviews angular contact bearings by type, classification and illustrates some of the applications where this knowledge will be useful. Most service center mechanics have a basic knowledge of bearing types and sizes. But angular contact bearings are less common than the standard radial ball bearings. Therefore, it is easy to miss important characteristics that impact performance. Topics include:

  • Types of bearings
  • Internal fits
  • Bearing identification by numbering system
  • Load ranges and applications

This recording will be useful for mechanics, shop supervisors and engineering staff.

Available Downloads

ANSI/EASA Standard AR100-2020: Recommended Practice for the Repair of Rotating Electrical Apparatus

ANSI/EASA Standard AR100-2020: Recommended Practice for the Repair of Rotating Electrical Apparatus

ANSI/EASA AR100-2020EASA’s “Recommended Practice for the Repair of Rotating Electrical Apparatus” is designated ANSI/EASA AR100 and was first approved as an American National standard in 1998. Since then it has been revised and approved four more times, in 2001, 2006, 2010, 2015 and now in 2020. 

ANSI/EASA AR100 is a must-have guide to the repair of rotating electrical machines. Its purpose is to establish recommended practices in each step of the rotating electrical apparatus rewinding and rebuilding processes.

The scope of this document describes record keeping, tests, analysis and general guidelines for the repair of induction, synchronous and direct current rotating electrical apparatus. It is not intended to take the place of the customer's or the machine manufacturer's specific instructions or specifications or specific accepted and applicable industry standards or recommended practices.

This document should be supplemented by additional requirements applicable to specialized rotating electrical apparatus including, but not limited to, listed explosion-proof, dust-ignition proof, and other listed machines for hazardous locations; and specific or additional requirements for hermetic motors, hydrogen-cooled machines, submersible motors, traction motors, or Class 1E nuclear service motors.

ANSI recognizes only one standard on a topic; therefore, ANSI/EASA AR100 is the American standard for repair of rotating electrical apparatus.The Recommended Practice is an important publication to distribute both internally and to customers.

Download or Purchase
This document is available as a FREE download (see links below) or printed copies may be purchased from EASA's online store in the near future.

DOWNLOAD AR100-2020 BUY PRINTED COPIES

Approval Process
The EASA Technical Services Committee (TSC) reviews the recommended practice and proposes changes; a canvass group approves and often comments on the TSC proposals. The canvass group has representation from service centers, end users, testing laboratories, government and those with a general interest. Per ANSI requirements, there must be balanced representation among the canvass group representatives. After the canvass group and the TSC find consensus agreement, the revised document is approved by the EASA Board of Directors. Following Board approval, ANSI is requested to approve the revision as an American National Standard. The entire process must be completed within five years following the previous revision. 

What’s New in 2020?
The 2020 edition of AR100 contains more than 40 revisions. Here, we will focus on the more significant changes, noted in clause order, and some of the reasons for making these changes. Also noted will be links between the changes and the EASA Accreditation Program. 

1.6 Terminal Leads: Added a note, “If the machine has a service factor, the terminal leads should be rated for the service factor current.” This is the practice used by many motor manufacturers. For example, if a motor had a full load current rating of 100 amps and a service factor of 1.15, the approximate service factor current would be 115 amps, and the lead wire size would be based on the 115 amp value. 

1.9 Cooling System: Added a new sentence: “The locations of air baffles and any stator end winding spacers that are utilized for guiding airflow should be documented prior to any stator winding removal to allow duplication within a replacement winding.” This applies to stator rewinds and helps ensure that the cooling airflow is not reduced during the rewind process. Effective August 2021, this will be a requirement in the Accreditation Program Checklist item 3. Cooling System.

2.5.1 Rotating Elements: The sentence, “The outer diameter of the rotating element laminations should be true and concentric with the bearing journals,” has been replaced with, “The runout of the rotating element core outside diameter relative to the bearing journals should not exceed 5 percent of the average radial air gap, or 0.003” (0.08 mm), whichever is the smaller value.” The new text is independent of the number of poles in a machine and is in line with tolerances used by motor manufacturers. 

3.1.2 Thermal Protectors or Sensors: The former clause 3.9 has been added for clarity. It states, “Replacement thermostats, resistance temperature detectors (RTDs), thermocouples and thermistors should be identical with or equivalent to the originaldevices in electrical and thermal characteristics and placed at the same locations in the winding. Thermal protectors or sensors should be removed or omitted only with customer consent and documented in the repair record.” The reason for moving the text of 3.9 into 3.12 was to have the topic of thermal protectors and sensors addressed in one clause. Since 3.9 was deleted, the remaining clauses of Section 3 beginning with former clause 3.10 were renumbered. 

  Table 4-2 Recommended Minimum Insulation Resistance Values at 40°C: This table and Table 4-1 were unnumbered in previous editions of AR100, including the 2015 edition. For clarity and editorial consistency, these two tables are now numbered. The tables that were, and remain, at the end of Section 4 were renumbered. A substantive technical change was that the minimum insulation resistance for all armatures is now IR1min = 5, which aligns with the 2013 edition of IEEE 43. 

4.2.4 Form-Wound Stator Surge Tests and 4.2.5 All Other Windings Surge Tests: Two identical paragraphs have been added to each of these clauses. The first paragraph explains how a surge pattern distinguishes between a satisfactory and unsatisfactory test result. The second paragraph explains that surge test results can be influenced by multiple factors, and that analysis of surge test results is subjective.  

Table 4-3 Form Coil New Winding Surge Test Voltages: This is a new table that provides surge test voltage levels for machines rated from 400 to 13800 volts in accordance with IEEE 522 and IEC 60034-15. The notes below the table provide test levels for uncured resin-rich or dry (green) VPI coils, and maintenance test levels for reconditioned windings.

 4.3.1 Stator and Wound-Rotor Windings: Two notes have been added to this clause. They are: “Per CSA C392 the resistance unbalance limit for random windings should be 2% from the average, and 1% from the average for form coil windings,” and, “Some concentric windings may exceed the 2% limit.” These notes add resistance balance tolerances and provide guidance for assessing resistive unbalance with concentric windings. 

4.4.1.1 New Windings: The sentence, “Immediately after rewind, when equipment is installed or assembled and a high-potential test of the entire assembly is required, it is recommended that the test voltage not exceed 80% of the original test voltage,” has been replaced with, “Immediately after rewind, when a high-potential test of the winding is required, it is recommended that the test voltage not exceed 80% of the original test voltage.” The primary reason for the change is that AR100 is a repair document, not an installation guide or standard. 

Conclusion 
The work of the Technical Services Committee to revise and improve AR100 is a continual process. Within a year or two, the revision process will become an active agenda item for the TSC. One of the foremost goals with AR100 is to include as many good practices as possible. Further, when it is desired or necessary to add new good practices to the Accreditation Program, AR100 is the conduit. The reason for this approach is that AR100 is the primary source document for the EASA Accreditation Program. 

Since AR100 is revised periodically it is a “living document.” Changes to AR100 not only aid with the Accreditation Program, its good practices and other guidance help enable service centers to provide quality repairs that maintain or sometimes even improve rotating electrical apparatus reliability and energy efficiency.

Available Downloads

Applying the best of repair best practices: Rewind study continues to pay off with important tips

Applying the best of repair best practices: Rewind study continues to pay off with important tips

Tom Bishop, P.E. 
EASA Technical Support Specialist

There are certain repair processes that can impact the efficiency and reli­ability of electric motors. Prudent repair practices must not increase overall losses, and preferably should maintain or reduce them. In some cases, repairers can also employ the principles applied by the motor designers and further reduce losses and enhance efficiency. Most of the following material is taken from, or based on, the “The Effect of Repair/Rewinding on Motor Efficiency; EASA/AEMT Rewind Study And Good Practice Guide to Maintain Motor Efficiency.” 

Stator core processing and repair 
Concerns about the possibility of core degradation during the rewind process have been expressed since at least the early 1990s. Higher tempera­ture rated core plate insulation mate­rial greatly reduces the possibility of core degradation during the burnout process. However, a best practice approach is to avoid the possibility of core damage no matter what type of core plate is used. 

The key steps to take during the burnout process are to set the burnout temperature to no more than 680° F (360° C), and use a temperature-sensing device attached to the core being processed to control the oven temperature. Further assurance that degradation will not occur is to use an oven equipped with a water suppression system. If an over-temperature condition is detected, the water spray is immediately activated. This method is highly effective because water changing from a liquid to a gas (steam) absorbs a tremendous amount of heat energy; much more than if simply changing tem­perature by absorbing heat energy. That is, water absorbs as much energy in changing from liquid to steam as it would in theoretically increasing temperature by 540° C (970° F). 

Prior to and following the burnout process the core should be tested, as illustrated in Figure 1. The core can either be loop tested (see Tech Note 17) or tested with a commercial type core tester. Both methods are effective. The watts per unit of weight core loss and temperature rise of the core during the test should be compared to each other (pre-and post-burnout process) and to typical limits. Typical limits for core loss are about 4 watts per pound (9 watts per kg) and for temperature rise about 15° C rise (27° F). Further, the watts loss per unit of weight should not increase more than 20% during the process, and best practice would be for neither temperature nor watts loss to increase at all. 

If the core test or visual inspection reveals core damage, the core should be repaired prior to winding. Minor defects such as splayed or flared laminations should be tamped back in place. A technique that is usually effective for flared laminations is to bend the teeth at the end of the slot at the vertical middle. That is, create a bowed effect, with the center bowed away from the core.

Tamping the teeth (by striking with a slight down­ward angle at the top of the teeth) back to the core causes the bowed teeth to act as a clamping mechanism. 

If lamination material has been eroded but the extent of the damage is minor, the laminations can normally be un-stacked in the affected area and restacked after repositioning the laminations to fill in the area that was missing lamination material. Removal of complete laminations should be avoided. As a guide to determining the limit of “minor” missing core ma­terial, it should not exceed 2% of the length of the core, or not affect more than 10% of the number of teeth. If damage is more extensive than these guidelines, best practice action steps would be to replace the damaged laminations with new laminations, restack the core with all new lamina­tions, replace the core, or replace the entire motor. New laminations can be obtained through firms that specialize in laser cut laminations, using a good original lamination as a template. 

Following core repair, always retest the core before proceeding with the rewind. The watts loss and tem­perature rise should both be less than prior to repair of the core damage; and the watts loss and temperature rise levels should be within the typi­cal limits given above. 

Winding practices 
The best practice goals in winding are to maintain or reduce the winding resistance and to maintain or improve the motor performance characteristics. The winding resistance is maintained by using the same size wire area, and the same mean (average) length of turn. Increasing the wire size area, reducing the mean length of turn, or doing both, reduces winding resis­tance. That reduces the stator winding I2R losses as the winding resistance is the “R” in the I2R equa­tion. Reduced losses mean that efficiency increases and heating is reduced, which length­ens the thermal life of the insulation. 

Reducing the length of the coil extensions is the only method of re­ducing the mean length of turn (MLT – the av­erage length of a single turn of the winding, as depicted in Figure 2) during rewinding. The core length is fixed, thus the only variable is the length of the end turns. The end turn length can be reduced to the point that any further reduction will result in a side force between the coil and the end of the slot. Going beyond that point can result in a winding ground fault due to the coil pulling against the slot cell extension and eventually breaking through it. 

Another consideration with coil extension length is that by reducing it, the surface area exposed to cooling air is also reduced. Although this would rarely be a significant pos­sibility, it should be kept in mind especially when there appears to be an opportunity to significantly reduce the coil extension distance. An example would be the pos­sibility of being able to reduce an approximately 4-inch (100 mm) coil extension to just less than 3-5/8 inches (90 mm). The 10% reduction in exposed length could increase heating due to less heat transfer from coils to cooling air. The effect of a +/- 10% change in MLT for a variety of motor power ratings is illustrated in Table 1. 

Increasing wire area is possible if slot space is available. A benefit of increasing slot fill is that there will be less space between wires, mak­ing varnish penetration and bonding more effective and resulting in better heat transfer as air pockets (voids) are reduced. However, making the wires fit too tightly in the slot can result in damage to the wire insulation as the winding is tamped in place with excessive force; the slot liner can also be damaged. It can also increase the time required to insert the coils. The increased wire area reduces copper (I2R) losses and reduceswinding tem­perature. The effects of these changes are increased efficiency and longer winding thermal life. 

Mechanical repairs 
Replacement bearings should be equivalent to those provided by the motor manufacturer. Selecting an incorrect bearing, such as changing from an open to a sealed bearing, will increase friction losses in the bearing, thus reducing efficiency. Incorrect in­stallation of a bearing—for example, driving it on by pressing against the outer race—can damage the bearing and cause rapid failure. Even a slight amount of damage can result in a noisy bearing. 

Bearings of C-3 internal clearance are the standard for most electric motors. A contact-type sealed bearing can create more friction than a shielded, open or non-contact sealed bear­ing. The increased friction results in a slight drop in efficiency. To avoid degrading efficiency and reducing reliability, it is good practice to remain with the open bearing style installed by the manufacturer. 

Fill the grease reservoir cavity to about one-third to one-half full. Over greasing a bearing, even by a small amount, increases friction losses. This not only reduces ef­ficiency (by 500 watts in one case cited in the EASA/AEMT study); it also causes local overheating, which can seriously reduce bear­ing life. Allow the motor to oper­ate unloaded long enough for the bearing temperature to drop. The drop in temperature indicates that the bearing has expelled excess lubricant and seated itself into a stable position. In essence, this denotes the bearing “break-in” period as shown in Figure 3. 

When application and environment dictate the installation of sealed bearings for reasons of reliability, some increase in bearing temperature and friction losses should be expected. A better alternative is to consider the installation of non-con­tact seals or bearing isolators, which exclude contaminants without causing friction. Some bearing manufacturers also offer non-contact sealed bear­ings. 

Ventilation issues 
Unfortunately, there is little op­portunity to improve efficiency by changing fans or ventilation, except in rare cases where a large increase in wire current capacity is possible, such as when converting from aluminum to copper wire. In such a case the fan size can be reduced if the aluminum wire is replaced with the same size copper wire. Reducing fan size or airflow reduces windage losses at the expense of increased winding heating. The converse also applies; increasing fan size or airflow reduces winding heating at the expense of increased windage losses.

Although we may not have opportunities to reduce losses with ventilation issues, good practices will result in maintaining the original efficiency. 

Installing an incorrect fan, or locating the fan or fan cover in the wrong position (improper clearance between the fan and fan cover), can affect windage. A fan that moves more air, i.e., has higher flow, inher­ently increases windage loss and reduces efficiency. Conversely, a smaller or lower flow fan (see Figure 4) reduces windage but also reduces cooling due to the lower airflow. If a fan has a broken blade or blades, it should be replaced. The miss­ing blade(s) reduce airflow and may increase vibration due to mechanical unbalance. 

Windage varies among fan designs, depending on factors such as diameter, the number and size of blades, mate­rial, and surface finish. The single most important variable is fan diameter. All else being equal, a smaller diameter (D1) trimmed fan moves considerably less air than the larger original diameter (D2), by the ratio: [(D2 / D1)3]; and symmetrical fans of different diameters vary by [(D2 / D1)4]. Thus a propor­tional replacement fan that is 5% larger in diameter compared to the original requires 22% more power to drive the fan. That diverted power is lost power, which reduces motor efficiency. 

An incorrect fan cover may reduce air flow; an example is where the open­ings in it are smaller than the original. Location of the fan relative to the cover is also important. If the fan is too close to the fan cover, cooling air flow will be reduced. A damaged fan cover may result in reduced air flow, as the air may “leak” through the cracks or become turbulent due to a section that has broken off. Even with the correct fan cover, air flow will be reduced if it is not free from dirt or other material that blocks or restricts the vent open­ings. 

Motor design aspects 
Increasing magnetic flux increases core losses and therefore heating of the windings. The results are reduced ef­ficiency and winding life, and reduced reliability. Reducing the number of turns or changing the coil span or connection can increase magnetic flux. Doing the opposite, e.g., increasing turns, reduces magnetic flux. However, the reduced flux reduces torque capa­bility and typically results in higher current for a given load. The higher current means increased I2R losses, reduced efficiency and increased heating. Thus to maintain efficiency and reliability it is best not to change the magnetic flux level of the wind­ing. All else equal, a slight increase in magnetic flux density is preferable to a slight decrease. That’s because a magnetically stronger design has less slip, reducing the rotor losses. 

Repairers of­ten prefer to use lap windings be­cause all coils are the same. This is acceptable provided that the new winding is chosen such that the flux per pole is not changed. Single-layer lap windings are sometimes used motors, because the coils are easier to insert and no separators are required, thus allowing more room for copper. Double layer lap windings give a better flux distribution in the core than single layer windings, and in no circum­stances should a double layer winding be replaced by a single layer wind­ing. To do so will reduce efficiency. 

Conversely, changing from a single- to a double-layer lap winding may reduce losses and improve efficiency slightly. 

If the stator core is partially or fully restacked, a reduction in the total number of laminations reduces the core iron volume, effectively increasing magnetic flux densities. The higher flux levels increase core losses and heating. Improper restacking, such as by not compressing the core tightly enough, or by over-tightening the core, can lead to increased core and stray load losses. A key to a successful restack is to assure that the original core length is maintained and that all of the removed laminations, or equivalent replace­ments, are installed in the core. 

The rotor I2R losses can be in­creased by reducing the end-ring cross-section or by increasing the resistance of the rotor bars and end-rings. The repair process does not normally affect the rotor resistance, unless the rotor is rebarred. If the rotor is rebarred, it is critically important to have the bars and end ring materials tested to determine, and duplicate, the material resistance (or maintain the opposite characteristic, conductivity.) 

If the rotor surface must be cleaned up by machining, a sharp cutting tool is a necessity. The usual reason for need­ing to machine the core is to correct smearing caused by a stator to rotor core rub. Grinding the rotor surface, or machining the rotor core with a blunt tool or at an incorrect surface speed, can result in smearing the laminations together. The smeared laminations probably will not become hot at running speed due to the low rotor frequency of only a few hertz. How­ever, the warmer core area can create a thermal bow, resulting in vibration and an unequal air gap. 

An unequal air gap can cause circulating cur­rents in the stator wind­ing, resulting in increased I2R losses. Repairs to the stator frame or end bracket rabbet/spigot fits that reduce stator-rotor concentricity increase air gap eccentricity, and can result in circulating currents that increase I2R losses. 

An excessive air gap will increase magnetizing current and also increase I2R losses. Machining the rotor diameter to increase air gap can reduce losses at the expense of power factor; however, too great an increase in air gap will increase losses. This should only be done when the manufacturer’s design air gap tolerance is known to the service center. 

Stray load losses, illustrated in Figure 5, are typically 10-20% of total motor loss. Stray loss can increase if the air gap surfaces of the laminations are smeared together. Stray loss will also be increased if the air gap is un­even (i.e., stator and rotor not concen­tric) and may be increased if a wrong replacement rotor is installed. 

Closing comments
Of the things that affect efficiency, a typical repair only influences the core, winding (I2R), and friction losses. These and other key topics have been addressed in these best practices. Documenting the before and after core loss, comparing winding resistance to the manufacturer’s re­cords, and confirming the bearing type provide assurance to you and to the customer that the motor’s efficiency was maintained during the repair.

Available Downloads

Asset reduction programs: Chopping versus pruning

Asset reduction programs: Chopping versus pruning

Dr. Al Bates
President, Profit Planning Group
Boulder, Colorado

“So this EASA member walks into a bank and asks for a loan.” Well, there’s no need to wait for the punch line as it is no laughing matter. In many cases, the credit available to members has all but dried up. Where money is available, banking require­ments are becoming more restrictive almost every day. The likelihood of things getting better any time soon is remote.

With enough patience and concert­ed effort, the cash challenge associated with disappearing lines of credit can be overcome by rethinking gross mar­gin and expense levels even during a recession. In fact, this will be the topic of the next Profit Improvement Report.  However, many distributors need cash now, not in six months. The conclusion is that inventory and accounts receiv­able reductions are in order.

Available Downloads

Aumente El Rendimiento y La Rentabilidad a Partir De La Capacitación Sobre Datos De Reprocesos

Aumente El Rendimiento y La Rentabilidad a Partir De La Capacitación Sobre Datos De Reprocesos

Matthew Conville, P.E.
Especialista de Soporte Técnico de EASA

 Bueno, es marzo y los propósitos de Año Nuevo para su centro de servicio deberían avanzar a toda máquina. Algunos de los propósitos típicos que escuchamos son: “Queremos ser más eficientes para que el trabajo salga”, “Queremos mejorar nuestro resultado final para ser más rentables” y “Realmente queremos brindar capacitación a nuestra gente".

Todas estos son buenos propósitos, pero puede que sea muy difícil ejecutarlos. Algunos de los comentarios que recibimos son: “En nuestro centro de servicio usamos 6S, pero no somos más rápidos”, “Ahora estamos organizados y empleamos principios lean, pero no somos más rentables que antes” y “Queremos brindar capacitación a nuestros empleados, pero no sabemos en qué capacitarlos para ayudarlos en su función actual”.

Si bien no existe una respuesta única que incluya todos estos propósitos, utilizar datos en nuestro centro de servicio pueden ayudarnos a lograrlos.

Entonces, ¿De qué datos estamos hablando? ¿Requiere algún tipo de sistema informático sofisticado? Los datos que se recopilarán son los de las no conformidades y, posteriormente, los de los reprocesos necesarios para corregirlas. Esto no requiere un sistema de seguimiento detallado para ser muy eficaz.

Para cumplir con nuestros propósitos, definiremos la no conformidad y el reproceso, discutiremos algunos ejemplos en un centro de servicio, consideraremos lo que dice la ISO 9001 sobre las no conformidades y cómo deben tratarse y cómo avanzar con este conocimiento.

Available Downloads

Avoid Near-Miss Incidents with a Simple System

Avoid Near-Miss Incidents with a Simple System

Bret McCormick
Region 2 Director
Stewart’s Electric Motor Works, Inc.
Orlando, Florida

Near Miss? Near Hit? Close Call?  

No one ever wants to hear these phrases. These unplanned incidents have the potential of causing serious damage or injury. A good number of these narrow escapes come from a lack of defining proper processes and procedures. Too many people think “no harm, no foul.” Unfortunately, this does not address the root issue. Someone could have been seriously hurt. Not addressing the underlying problem will undoubtedly allow it to happen again.

Available Downloads

Avoiding high no-load amps on rewound motors

Avoiding high no-load amps on rewound motors

Tom Bishop, P.E. 
EASA Technical Support Specialist
 
Have you ever had to deal with a rewound motor that had high no-load amps? That is almost a rhetori­cal question as most of us have experienced this situation. The focus of this article will be on steps to take before rewinding in order to avoid the condition of high amps after the rewind. 

Steps that should be performed on every AC stator rewind: 

  1. Inspect the stator bore and rotor outside diameter for evidence of machining or damage. 
  2. Record the original winding data exactly as found. 
  3. Test the stator core before winding removal. 
  4. Verify the winding data. 
  5. Test the stator core after winding removal and cleaning. Applying these five steps will help avoid the vast majority of situations where a rewound motor will exhibit high no-load current. If these steps were not all followed and a motor has high no-load current, if possible, perform any steps above that were omitted. 

Available Downloads

Avoiding Pitfalls in Three-phase Windings with Unequal (Odd) Grouping

Avoiding Pitfalls in Three-phase Windings with Unequal (Odd) Grouping

Tom Bishop, P.E.
EASA Senior Technical Support Specialist

When the number of coils per group is the same throughout a three-phase lap winding, the grouping sequence is simply that number of coils repeated three (since it is three-phase) times the number of poles. For example, a 48-slot 4-pole winding has 12 groups of 4 coils.

The formula used to determine the average number of coils per group is:
Coils per group = slots divided by groups.

We don’t advocate using full slot coils with a lap winding; thus, the total number of coils is equal to the number of slots. The number of groups in an alternating pole winding is equal to the number of phases times the number of poles. In many cases, there are windings that have unequal coils per group, such as a 36-slot 8-pole winding, which has 24 groups with an average of 1.5 (36/24) coils per group.

Available Downloads

Axial hunting of 2-pole motors: Causes and cures

Axial hunting of 2-pole motors: Causes and cures

Chuck Yung 
EASA Technical Support Specialist 

A common observation about 2­-pole machines fitted with sleeve bearings is the inherent weak magnetic centering force. The classic symptom is chronic axial movement: a 2-pole rotor drifting “to and fro” from the established magnetic center position. This article addresses the numerous causes of this phenomenon, colloqui­ally referred to as “hunting.” Although the focus is on 2-pole motors, much of this information applies to sleeve bearing motors of any speed rating. Identifying the cause of a problem is good, but solutions are a lot more useful, so I’ve included those as well. 

We can use magnets to describe how a motor works. Opposite poles attract; like poles repel. The magnetic field rotating within the stator turns the rotor, and magnetic force affects the axial position of the rotor relative to the stator core. 

Available Downloads

Axial Thrust in Rotodynamic (Centrifugal) Pumps

Axial Thrust in Rotodynamic (Centrifugal) Pumps

ABB logoGene Vogel
EASA Pump & Vibration Specialist

When repairing centrifugal and axial flow pumps, axial thrust is a concern. An understanding of the causes and the mitigating provisions of various pump designs will help repair technicians to ensure those provisions work properly. Various impeller designs, end suction and vertical turbine pumps will be a primary focus. 

Primary topics are: 

  • Factors affecting the amount of axial thrust developed by an impeller 
  • Review of some common mitigation designs 
  • What repair technicians need to look for on various pump designs 

The mechanical pump components can be repaired without understanding the hydraulics of how a pump works. But it’s easy to miss important features that can affect pump performance and reliability.  

This presentation will be helpful for pump repair technicians and supervisor and engineers associated with pump repair.

Available Downloads

Balanceo Dinámico de los Impulsores de las Bombas

Balanceo Dinámico de los Impulsores de las Bombas

Gene Vogel
Especialiste de Bombas y Vibraciones

Al igual que con la mayoría de las otras máquinas reparadas comúnmente en los centros de servicio de EASA, el balanceo dinámico de los impulsores de las bombas es una cuestión importante. El desbalanceo excesivo imparte fuerzas sobre los rodamientos, reduciendo su vida útil y sometiendo los soportes de las máquinas a una energía vibratoria que deteriora las fundaciones.

Desde la perspectiva del balanceo dinámico, los rotores de las bombas difieren mucho de los de los motores eléctricos más populares. La masa del rotor de un motor eléctrico se encuentra entre los rodamientos y la longitud de los rotores exceden a sus diámetros. Muchos impulsores de las bombas se encuentran montados en voladizo y es probable que sean más angostos que sus diámetros. Los componentes angostos pueden requerir reglas especiales para asignar el desbalanceo residual permisible (según ISO 21940-11), y pueden ser necesarias técnicas especiales para un balanceo eficiente en la máquina balanceadora.

Available Downloads

Ball Bearing Tips

Ball Bearing Tips

Dale Hamil
Technical Education Committee Member
Illinois Electric Works

Extending bearing life is the subject of hundreds of articles. Most have to do with lubrication do’s and don’ts, mounting issues, improper handling and contamination. This article is not intended to supplant any of those articles. My intent here is to provide some common sense guidance and provide links to resources that can help.

Available Downloads

Beating the recession: Profit performance in a down year

Beating the recession: Profit performance in a down year

Dr. Al Bates, President
The Profit Planning Group
Boulder, Colorado

By almost any measure that can be used, 2009 was a tough year. However, even in the midst of a difficult econo­my, profit opportunities continued to exist. Just as in good times, some firms didn’t merely survive—they pros­pered. Understanding just how firms adapted to changing circumstances to keep generating adequate profits provides a basis for both immediate action and for future planning.

The recently completed 2010 EASA Operating Performance Report (of 2009 data) provides detailed financial and operating benchmarks for the in­dustry. As always, the primary benefit of the report is that it highlights the distinction between the performance of the typical firm and the high-profit firm. The differences are important in normal times; they are critical in tough times. (The following is based on 109 participants in the EASA 2010 Operating Performance Survey.)

Available Downloads

Best AC Rewind Practices

Best AC Rewind Practices

Electrom InstrumentsPresented by Chuck Yung
EASA Senior Technical Support Specialist

This webinar recording shares some of the “best practice” rewind methods used by (and learned from) EASA service centers around the world: connection recognition, best insulating materials, wire choices and tips to save time and effort. Topics covered include:

  • Slot liner, separators and phase insulation
  • Managing voltage stresses
  • Making the connection: solder, crimp fittings or silphos
  • Lacing tips
  • Testing the completed winding

This webinar is intended for experienced and prospective winders, and those who supervise winders.

Available Downloads

Beware of PCBs! (Poly-Chlorinated BiPhenyls)

Beware of PCBs! (Poly-Chlorinated BiPhenyls)

Dale Hamil
Technical Education Committee Member
Illinois Electric Works

Polychlorinated biphenyls (PCBs) are a group of manmade chemicals. They are oily liquids or solids, clear to yellow in color, with little or no smell or taste, and they are stable mixtures that are resistant to extreme temperature and pressure. The primary company that made PCBs in the United States was Monsanto Inc., mainly using the name Aroclor; however, many companies attached their own brand names, a list of which can be found at the bottom of this article article.

Polychlorinated biphenyls were widely used as dielectric and coolant fluids in transformers, oil filled switches, capacitors, electromagnets, cutting fluids for machining operations and in heat transfer fluids. They were even used in some carbonless copy paper. Oil-filled bushings in transformers over 69KV are known to often contain PCBs. Due to the environmental toxicity and classification as a persistent organic pollutant, PCB production was banned by the United States Congress in 1979 and by the Stockholm Convention on Persistent Organic Pollutants in 2001.

Available Downloads

Building a Training Budget for Your Electromechanical Business

Building a Training Budget for Your Electromechanical Business

Chase Fell
Technical Education Committee Chair
Jay Industrial Repair

It’s always important to spend time creating a training budget because it outlines the resources that a company allocates for its training programs.

Studies show that training spending per employee per year often falls in the range of 1% - 3% of the employee’s annual salary.

According to the 2022 Training Industry Report, on average, employees received 62.4 hours of training per year.* However, this data is not specific to industrial training.

Available Downloads

Capacitor Testing for Electric Motors

Capacitor Testing for Electric Motors

Tom Bishop, P.E.
EASA Senior Technical Support Specialist

In this article, we will discuss testing of capacitors for electric motors in general and tests associated with specific uses of capacitors such as for power factor correction, and for electric motor starting (see Figures 1 and 2). For information on sizing power factor correction capacitors see Subsection 2.10 of the EASA Technical Manual, and for determining the correct size capacitor for a motor, see Subsection 2.11 of the EASA Technical Manual.

Available Downloads

Características y propiedades de prueba de grasas y aceites

Características y propiedades de prueba de grasas y aceites

Tom Bishop, PE
Especialista Sénior de Soporte Técnico de EASA

La lubricación es requerida para reducir la fricción entre los elementos rodantes y las partes estáticas de los rodamientos. Al hacer esto, el lubricante también ayuda a prevenir incrementos de temperatura excesivos y a disipar parte del calor generado. En este artículo discutiremos algunas de las características y propiedades clave de los aceites y grasas lubricantes.

Available Downloads

Caring for Your Mental Health

Caring for Your Mental Health

Sean McNamara
Technical Education Committee Member
Region 10 Director
Komatsu
Rutherford, New South Wales, Australia

The COVID pandemic has affected everyone on the planet at some point in some way, shape or form, including how to go about daily life. Activities we usually take for granted, such as going to a coffee shop, a restaurant, a football game or a holiday, have restrictions or are not happening at all. These changes can impact the mental health and well-being of everyone differently. Some people may seem more resilient than others, but we need to be aware of how this unique situation affects us, and how we can minimize the impact on ourselves, our family, our friends and our employees. 

There are many ways that people can manage their well-being. The coronavirus pandemic has had a profound impact on all facets of society. People must take a practical approach to handle the toll on mental health. 

Consider these methods to look after your mental health amid the coronavirus pandemic.  

Try to maintain perspective. While it is reasonable for people to be concerned about the outbreak of coronavirus, try to remember that medical, scientific and public health experts worldwide are working hard to contain the virus, treat those affected and develop and distribute vaccines as quickly as possible. 

Find a healthy balance with media coverage. Constant exposure to large volumes of negative information can heighten feelings of anxiety. While it’s important to stay informed, you may find it useful to limit your media intake if it is upsetting you or your family. 

Keep moving. Exercise is great for physical health and can also have a positive effect on your well-being. Build your confidence with basic activities such as walking, gardening and small household tasks. Do what’s enjoyable to you. Spend some time with your family and involve them in the activities. Staying active is a proven method of achieving and maintaining good mental health. 

Try to minimize temptations. At times like this, some may indulge in alcohol and poor food choices more frequently. These decisions can also affect your mood. In conjunction with physical activity, ensure you have a healthy, balanced diet and enjoy everything in moderation. 

Try to maintain a practical and calm approach. Widespread panic can complicate efforts to manage the outbreak effectively. Do your best to stay calm and follow official advice, particularly around observing good hygiene habits. Governments around the world have provided advice about maintaining positive mental health during the crisis. 

Try not to make assumptions. To contribute to a sense of community well-being, remember that the coronavirus can affect anyone, regardless of nationality. Also, remember that those who have contracted COVID-19 have not done anything wrong. 

Check in on family, employees and friends. Everyone has handled this differently. Staying connected with friends and family is tricky right now, but you can still do so virtually. These regular check-ins will help increase others’ well-being and confidence, and you will feel good about it too! 

Seek support. It’s normal to feel overwhelmed or stressed. Identify strategies to cope with those feelings like:

  • Activating your support network.
  • Acknowledging feelings of distress.
  • Seeking professional support early if you’re having difficulties.

For those already managing a mental health issue, continue with your treatment plan and monitor for any new symptoms. 

Social contact and maintaining routines can help our mental health and well-being. In circumstances where this is not possible, staying connected with friends and family online or by phone can help make things easier. Acknowledge feelings of distress and seek further professional support if required.


Editor’s Note: This content is not intended to substitute for professional advice, diagnosis or treatment. Always seek your mental health professional or other qualified health providers’ advice with any questions you may have regarding your condition. If you are in crisis or think you may have an emergency, call your doctor or a skilled, trained counselor at a crisis center in your area. 

Available Downloads

Causas Comunes del Daño en la Superficie de los Impulsores de las Bombas

Causas Comunes del Daño en la Superficie de los Impulsores de las Bombas

Gene Vogel
Especialista de Bombas & Vibraciones de EASA

Es común encontrar impulsores de bombas con daños significativos en la superficie. Las tres causas más comunes de daño superficial son la erosión, la corrosión y la cavitación. En cada uno de estos problemas existen características que ayudarán a indicar la causa primaria de fallo por lo que será útil una breve descripción de cada uno de estos tres fenómenos. La erosión es la más sencilla; esta simplemente es el desgaste de las superficies del impulsor ocasionada por los materiales abrasivos suspendidos en el bombeo. La corrosión también es simple ya que es una reacción química entre las moléculas ionizadas en el bombeo y los elementos metálicos del impulsor. La oxidación es la corrosión más común en los impulsores de las bombas. La cavitación es un fenómeno más complejo y tiene que ver con la formación e implosión de burbujas en el bombeo debido a los cambios de presión presentes cuando el bombeo fluye a través del impulsor. La baja presión en la succión permite que se formen burbujas de vapor y luego estas burbujas implosionan a medida que aumenta la presión a través del impulsor. La apariencia del daño en las superficies del impulsor refleja las características de cada uno de estos tres fenómenos.

Available Downloads

Causas y Soluciones de las Fugas en los Sellos Mecánicos de las Bombas

Causas y Soluciones de las Fugas en los Sellos Mecánicos de las Bombas

Gene Vogel
Especialista de Bombas and Vibraciones de EASA

En el principio, Dios hizo circular el agua libremente por toda la tierra. Entonces el hombre hizo las bombas para hacer fluir el agua donde él quería. Entonces Dios creó las fugas y el hombre creó los sellos de las bombas. Dios sonrió. El hombre continuó luchando contra las fugas en los sellos.

Para aquellos que son nuevos en el negocio de la reparación de bombas, los sellos pueden resultar intimidantes, sin embargo, es bien conocido que los sellos mecánicos de las bombas son dispositivos temperamentales que fallan con frecuencia. El hecho es que los sellos mecánicos son dispositivos simples que a menudo son utilizados de forma inadecuada, algunas veces instalados incorrectamente o tal vez montados en bombas que no son aptas para la aplicación. En la mayoría de las aplicaciones, los sellos mecánicos son lo suficientemente macizos para tolerar condiciones de operación y de manejo menos óptimas. Para aplicaciones exigentes todo debe estar bien.

Causes and Solutions for Leaking Pump Mechanical Seals

Causes and Solutions for Leaking Pump Mechanical Seals

Gene Vogel
EASA Pump & Vibration Specialist

In the beginning, God made water to run freely over the earth. Then Man made pumps to make water run where he wanted it. Then God made leaks. Then Man made pump seals. God laughed. Man continues to struggle with leaking pumps seals.

For those new to pump repair, mechanical seals can be intimidating. It is commonly known that pump mechanical seals are temperamental devices that fail frequently. The fact is, mechanical seals are simple devices that are often misapplied, sometimes installed incorrectly, or perhaps installed on pumps that are not well suited for the application. For many applications, the mechanical seal is robust enough to tolerate less than optimal handling and operating conditions. For more demanding applications, everything must be right.

Available Downloads

Characteristics and Test Properties of Greases and Oils

Characteristics and Test Properties of Greases and Oils

Tom Bishop, PE
EASA Senior Technical Support Specialist

Lubrication is needed to reduce friction between the rolling elements and stationary parts of a bearing. By reducing bearing friction, lubricants also help prevent undue temperature rise and dissipate some of the heat that is generated. This article describes some of the key characteristics and properties of lubricating greases and oils.

Available Downloads

Choosing the Right Insulation System for Medium Voltage Rewinds

Choosing the Right Insulation System for Medium Voltage Rewinds

Mike Howell, PE
EASA Technical Support Specialist 

The insulation system chosen for any rewind should be suitable for the application, the voltage class, and the winding process capability of the service center. In most cases, adherence to “equal to or better than” selection is a good practice.

Available Downloads

Choosing the Right Management Style for Effective Leadership

Choosing the Right Management Style for Effective Leadership

Ryan Senter
Management Services Committee Member
Hibbs ElectroMechanical, Inc.

A quick search on management styles will lead you down a rabbit hole of opinion pieces, blogs and even entire books defining various approaches to adopt and others to avoid. In an attempt to sound innovative and sell the next book, I believe some of these self-recognized experts invent new terminology to redefine the same basic practices. However, one thing I agree with them on is adhering to a few specific management styles can improve leadership effectiveness.

A good leader recognizes the importance of employing the right management style at the right time to increase productivity, boost morale, encourage retention and manage crisis.

Circulating Currents in AC Stator Windings

Circulating Currents in AC Stator Windings

Presented by Chuck Yung
EASA Senior Technical Support Specialist

This webinar recording discusses the equalized connections found in an increasing number of factory windings, explains why they are used, and addresses whether or not they are needed when converting a concentric winding to a lap winding. Alternatives, such as changing the number of circuits, or the special extra-long jumpers, are also compared.

The webinar recording covers

  • Explanation of why machine-wound concentric windings use equalizers
  • Effect of unbalanced voltage
  • Role of air gap in causing circulating currents
  • Labor involved and risk of failures due to increased complexity
  • How to properly locate the equalizers

This webinar is useful for engineers, service center managers, mechanics and sales representatives.

Available Downloads

Common Causes of Surface Damage in Pump Impellers

Common Causes of Surface Damage in Pump Impellers

Gene Vogel
EASA Pump & Vibration Specialist

It’s common to find pump impellers with significant surface damage. The three most common causes of surface damage are erosion, corrosion and cavitation. For each of these there are characteristics which will help indicate the primary cause of the damage.

A brief description of each of the three phenomenon will be helpful:

  • Erosion is the simplest; it is simply the wear to the impeller surfaces from abrasive materials suspended in the pumpage.
  • Corrosion is also straightforward; corrosion is a chemical reaction between ionized molecules in the pumpage and metallic elements of the impeller. Oxidation is the most common corrosion on pump impellers.
  • Cavitation is a more complex phenomenon. Cavitation is all about bubbles forming and imploding in the pumpage due to the pressure changes that occur as the pumpage flows through the impeller. Low pressure at the suction allows vapor bubbles to form and then these bubbles implode as the pressure increases through the impeller.

The appearance of the damage to the impeller surfaces reflects the characteristics of the each of these three phenomenon.

Available Downloads

Common Motor Issues in the Service Center

Common Motor Issues in the Service Center

Tom Bishop, PE
EASA Senior Technical Support Specialist

Three of the most common three-phase motor problems we receive inquiries about are:

  1. “The motor is drawing high no-load current.”
  2. “The current of the three line leads is not balanced.”
  3. “The motor is running hot.”

Even if you have never faced one of these issues, read on because it is almost inevitable that you will, and you will want to know what to do about it.

Available Downloads

Cómo Probar y Evaluar la Condición del Núcleo de un Estator con la Prueba de Lazo (“Toroide” o Loop Test)

Cómo Probar y Evaluar la Condición del Núcleo de un Estator con la Prueba de Lazo (“Toroide” o Loop Test)

En Español

Carlos Ramirez
EASA Technical Support Specialist

¿El motor consume mucha corriente en vacío, aunque los datos del bobinado son correctos? ¿El motor se calienta con carga de forma inusual? Estas son preguntas comunes que pueden ser resueltas verificando la condición del núcleo del estator. En este webinario discutiremos cómo realizar la prueba de lazo en el núcleo de un estator y cómo analizar los resultados obtenidos, proporcionando información sobre los equipos utilizados, consejos para reparar el núcleo del estator y otras pruebas alternativas.

El seminario incluye:

  • Teoría de la prueba de lazo (“toroide”)
  • Procedimiento de prueba
  • Límites aceptables para las pérdidas y las temperaturas en el núcleo
  • Equipo asociado
  • Consejos para la reparación de núcleos dañados
  • Pruebas alternativas

Este webinario es útil para supervisores, bobinadores y personal encargado de realizar las pruebas.

Available Downloads

Concentric to Lap Conversions

Concentric to Lap Conversions

Tom Bishop, PE
EASA Senior Technical Support Specialist

One of the most frequent member requests to our technical support group is for conversion of a 3 phase winding from concentric to lap. An excellent alternative to requesting the conversion is to use the EASA AC Motor Verification and Redesign (ACR) program to calculate the changes. In fact, many members have purchased the redesign program and have called us to confirm their conversions as they develop their proficiency and “comfort level” with the program. However, our emphasis here is not to convince you to purchase the ACR program but to cover the important details for a proper concentric to lap winding conversion.

Available Downloads

Concentric, Lap or Full Slot Lap: When Is a Shortcut Not a Shortcut?

Concentric, Lap or Full Slot Lap: When Is a Shortcut Not a Shortcut?

Chuck Yung
EASA Senior Technical Support Specialist

While manufacturers use concentric windings due to their ability to wind the coils directly into a core, many repairers convert them to lap windings to take advantage of the superior MMF (magneto-motive force) curve.

Although the former Tech Note 12 (see page 2-187 of the EASA Technical Manual), and the AC Motor Verification and Redesign Program, Version 4 allow us to convert a concentric winding to a comparable lap winding, there are still some winders using “shortcuts” they have learned over the years.

Available Downloads

Concentrico, Excéntrico o Excéntrico a Ranura Llena: ¿Cuándo Un Atajo No Lo Es?

Concentrico, Excéntrico o Excéntrico a Ranura Llena: ¿Cuándo Un Atajo No Lo Es?

Chuck Yung
Especialista Sénior de Soporte Técnico de EASA

Mientras los fabricantes usan devanados concéntricos por su capacidad para bobinarlos directamente dentro del núcleo, muchos reparadores los convierten en bobinados excéntricos para aprovechar su curva FMM (fuerza magnetomotriz) superior.

Aunque la antigua Tech Note 12 (vea la página 2-187 del Manual Técnico de EASA), y la versión 4 del AC Motor Verification and Redesign Program, permiten convertir un bobinado concéntrico en un bobinado excéntrico comparable, aún existen algunos bobinadores empleando “atajos” que han aprendido con el tiempo.

Available Downloads

Condiciones de Servicio Normales + Inusuales en Motores y Generadores

Condiciones de Servicio Normales + Inusuales en Motores y Generadores

Tom Bishop. P.E.
Especialista Sénior de Soporte Técnico de EASA

¿Cuáles son las condiciones normales para las que está diseñado un motor eléctrico? Esta es una pregunta que no surge muy a menudo, excepto cuando existe un problema con la aplicación.

La norma NEMA MG1 para motores y generadores proporciona detalles sobre este tema, definiendo las condiciones de servicio normales e inusuales. La norma IEC 60034-1, “Rotating Electrical Machines, Part 1 Ratings and Performance”, trata también algunas condiciones de aplicación en la cláusula 6, aunque no en la medida que lo hace la norma MG1. Nuestro enfoque estará basado en la norma MG1, ya que proporciona más detalles que la norma IEC 60034-1.

Available Downloads

Conducting an Inspection for Long-Term Reliability

Conducting an Inspection for Long-Term Reliability

Steven Carbone
Technical Education Committee Member
Industrial Electro-Mechanics

In today’s ever-increasing competitive environment, end users are looking for rotating apparatus service centers to increase their offering of value-added support. One of the easiest ways for a service center to achieve this is through a thorough and detailed inspection of items in the shop requiring repair. The results of this type of inspection allow for improved reliability achieved through the results of the evaluation and recommendations the service center offers to prevent reoccurring failures and improve mean time between failure.

Available Downloads

Conexiones Externas en los Motores Eléctricos Trifásicos

Conexiones Externas en los Motores Eléctricos Trifásicos

En Español

Presentado por Carlos Ramirez, EASA Technical Support Specialist

La conexión incorrecta de los motores eléctricos es una causa frecuente de fallo y es más común de lo que parece. La falta de información y la mala interpretación de los datos de placa son algunas de sus causas. En este webinario se explican los diferentes tipos de conexiones para los motores eléctricos trifásicos de una o varias velocidades con al menos 6 cables de salida y se comparan las equivalencias NEMA e IEC para el marcado de cables. La información proporcionada también será de gran utilidad para evitar el conexionado incorrecto en los diferentes voltajes. También incluye las conexiones por devanado partido (Part Winding) y como interpretar la información de la conexión de la placa de datos.

El webinar incluye:

  • Conexiones Estrella y Delta (“Triángulo”)
  • Conexiones para motores de una sola velocidad con al menos 6 cables de salida
  • Conexiones para motores de dos velocidades con al menos 6 cables de salida
  • Conexiones para Devanado Partido (Part winding)
  • Equivalencias NEMA e IEC para el marcado de cables  
  • Interpretación de la información de la conexión de la placa de datos

Este webinario es útil para supervisores, personal encargado de realizar pruebas y responsables del centro de servicio.

Three-Phase Motor External Connections
Misconnection of electric motors is a common cause of failure, and it’s more common than it seems. The lack of information and an incorrect interpretation of the nameplate information are some of its causes. This webinar will explain different connections that can be used in three-phase motors with 6 or more leads single-speed or multi-speed comparing NEMA and IEC labeling methods. Information provided will also be useful for avoiding misconnections at different voltages and includes part winding connections and nameplate information interpretation.

The webinar will include:

  • Wye and delta connections
  • 6 and more leads single-speed connections
  • 6 and more leads two-speed connections
  • Part winding connections
  • NEMA and IEC marking equivalents
  • Nameplate information interpretation
This webinar will be useful for service center managers, supervisors and test technicians.

 

Connecting NFPA 70E® Updates to Your Marketing

Connecting NFPA 70E® Updates to Your Marketing

Ron Widup
Marketing & Industry Awareness Committee Chair
Shermco Industries

How are your marketing efforts related to the latest changes in the National Fire Protection Association's electrical safety standard, NFPA 70E® Standard for Electrical Safety in the Workplace? The NFPA 70E® has a specific purpose, and it never mentions marketing. After all, these are two entirely different subjects. Or are they?

We should always think about safety. It needs to be top of mind every day for every task, whether you are standing in front of an energized piece of high-voltage equipment, driving through a school zone or cleaning the gutters on your roof. We all  agree that safety is important, but where is the connection to marketing? 

The NFPA 70E® (Article 90.1) says: 

The purpose of this standard is to provide a practical, safe working area for employees relative to the hazards arising from the use of electricity.

Let's apply the following five points to the latest changes found in NFPA 70E® and how they relate to marketing. You can apply these principles to similar thought streams, including new government rules and regulations, customer-specific requirements and ANSI/EASA AR100.

Available Downloads

Consejos para Analizar los Espectros de Vibración

Consejos para Analizar los Espectros de Vibración

Gene Vogel
Especialista de Bombas & Vibraciones de EASA

La herramienta más básica usada por los analistas de vibraciones son los espectros. Este es un gráfico que ilustra las frecuencias presentes en una señal de vibración y sus amplitudes relativas. Una buena forma de entender el espectro es como si se tratara de un “gráfico de barras” de las frecuencias, con cientos de “barras” verticales individuales a través de un rango de frecuencias. La mayoría de los espectros muestran la amplitud más alta en cada barra de frecuencia como un solo punto, por lo que el gráfico aparece como una línea escarpada que refleja las amplitudes más altas para cada una de las barras. La frecuencia más alta del gráfico se llama fmax y el número de barras del gráfico se conoce como “número de líneas de resolución”.

Available Downloads

Consejos para el Tratamiento con Resina en los Centros de Servicio

Consejos para el Tratamiento con Resina en los Centros de Servicio

Chuck Yung
Especialista Sénior de Soporte Técnico de EASA

Uno de los temas más debatidos en nuestra industria es la comparación- y los procedimientos- de impregnación por presión y vacío (VPI) versus la inmersión y secado en horno. En este artículo, he ampliado la discusión para incluir bobinas semicuradas (B-stage) y el método de goteo (trickle). Los centros de servicio que cuentan con un tanque de VPI resaltarán rápidamente los muchos beneficios del VPI, como un mejor sellado de los devanados y una mejor transferencia de calor entre los conductores de los bobinados y la carcasa para mejorar la disipación de calor.

Los bobinados de pletina (solera/bobinas formadas) y de alambre redondo tienen dos problemas claramente diferentes. Para las máquinas con bobinas de pletina, la penetración de la resina es la mayor preocupación, lo que le brinda una clara ventaja al proceso VPI. En los bobinados de alambre redondo, la inquietud es la retención de la resina.

Available Downloads

Consider holding an open house as a great way to market your business

Consider holding an open house as a great way to market your business

Andy Butz
Electric Motor Technologies
Cincinnati, Ohio
Marketing & Industry Awareness Committee Member

Looking for a good way to market your business? A great idea is to hold an Open House. An Open House is de­fined in the dictionary as a social event in which hospitality is extended to all. It is meant to be a fun-filled event. And it can be a great way to market your business to existing customers as well as new prospects. 

In the EASA Marketing Manual, there are step-by-step instructions on how to prepare and host an Open House. Our company followed these steps when we hosted a very successful one last fall. 

Available Downloads

Consider Rated Voltage and Frequency When Testing

Consider Rated Voltage and Frequency When Testing

Mike Howell
EASA Technical Support Specialist

When possible, it is good practice to perform an uncoupled, no-load run on an induction motor as an incoming diagnostic test. A no-load run should also be performed after assembly, and ANSI/EASA AR100-2020 states that “no-load running tests should be made at rated voltage and rated frequency.” In this article, we’ll discuss some of the reasons why this is important and some things to consider when you cannot meet both requirements.

Available Downloads

Consider the many advantages of business diversification

Consider the many advantages of business diversification

Iain Jenkins Jenkins Electric Co.
Charlotte, North Carolina
Marketing & Industry Awareness Committee Member

Recessions provide a fertile environment for learning about the importance of business diversity. As an EASA business manager for the last ten years, I’ve done my fair share of learning. The following are a few quick impressions of what diversity has meant in our company.

Effective diversification involves finding ways to apply your company’s existing assets, particularly your employees’ experience and skill-sets, to new markets. These “knowledge” assets take time to build, are hard to duplicate, and are much more versatile than a purpose-built machine or building. New markets include new industries, new customer types (utility, military, etc.), new geographical regions, and fulfilling different needs for the customers that you already serve.

Available Downloads

Consider Winding Balance with Redesigns and Rewinds

Consider Winding Balance with Redesigns and Rewinds

Mike Howell
EASA Technical Support Specialist

Most AC stator windings installed by EASA service centers are balanced, three-phase, two-layer, lap windings. But, what does it mean for such a winding to be balanced? If balanced, the voltages generated in each phase are equal in magnitude and displaced from each other by the same angle (See Figure 1 Balanced). If there is any difference in magnitude or angle displacement, the winding is unbalanced (See Figure 1 Unbalanced). It is well established that unbalanced windings can cause undesirable vibration, electromagnetic noise, and additional conductor heating due to circulating currents.

Available Downloads

Consideraciones Importantes Para Acondicionar la Reparación de Bombas en su Centro de Servicio

Consideraciones Importantes Para Acondicionar la Reparación de Bombas en su Centro de Servicio

Gene Vogel
Especialista de Bombas & Vibraciones de EASA

Esto sucede en casi todos los centros de servicio de EASA, aparece una máquina para reparación, con cables y un motor, pero es una bomba. A menudo es una bomba sumergible o de acoplamiento cerrado. Si su respuesta es: “Aquí no reparamos estos equipos” y está pensando: “Nosotros no sabemos nada sobre reparación de bombas” puede que le esté dando la espalda a un trabajo muy rentable.

Como ya detallé en mi artículo publicado en Febrero en la revista Currents, la reparación de bombas puede ser un área de expansión muy rentable para los centros de servicio especializados solo en la reparación de motores eléctricos. Si usted está de acuerdo en que la reparación de bombas sería una buena opción para su negocio, el próximo paso consiste en evaluar qué cambios necesita en sus instalaciones para incluir la reparación de bombas. Encontrará que ya tiene gran parte del equipo necesario. Las características de los motores y de las bombas centrífugas son muy similares y dependiendo del tipo de bomba, puede que necesite muy poco equipo adicional.

Available Downloads

Consideraciones para convertir bobinados de alambre redondo a pletina (solera)

Consideraciones para convertir bobinados de alambre redondo a pletina (solera)

Chuck Yung
Especialista Sénior de Soporte Técnico de EASA

Con el aumento continuo de los tamaños de los motores CA y la obvia superioridad de los devanados con bobinas preformadas (pletina o solera), un área en la que podemos ayudar a mejorar la confiabilidad de los motores de nuestros clientes es rediseñando estos motores grandes de alambre redondo para que acepten bobinas preformadas. La mayoría de los reparadores estarían de acuerdo en que las máquinas de alambre redondo por arriba de 600 hp (450 kW) deberían rediseñarse con bobinas preformadas. Así mismo, aquellas con tensiones nominales superiores a 2 kV serían más confiables con bobinas de pletina.

Nadie quiere rebobinar un motor con 60 #14 AWG (62- 1.6 mm). Con la abundancia de proveedores especializados en laminaciones de estatores, el costo y la practicidad para convertir motores de alambre redondo a pletina está al alcance de casi todos los centros de servicio. Las laminaciones para reemplazar el núcleo pueden ser troqueladas o cortadas con láser o agua y entregadas en tiempos muy razonables.

Available Downloads

Consideraciones para la resolución de los equipos de prueba & medida (M&TE)

Consideraciones para la resolución de los equipos de prueba & medida (M&TE)

Mike Howell
EASA Technical Support Specialist

La precisión y exactitud de los equipos de prueba & medida (M&TE) han sido tratadas en artículos previos de Currents (noviembre y diciembre de 2014). Un tema relacionado que no fue cubierto en dichos artículos es la resolución. El documento JCGM 200:2012 del Joint Committee for Guides in Metrology define resolución como: “El cambio más pequeño en una cantidad medida que causa un cambio perceptible en la indicación correspondiente”. Simplificado, es la diferencia más pequeña que puede ser medida por el equipo en cuestión. La exactitud de la M&TE debe ser mayor (menos exacto) o igual a la resolución. Es decir, durante la calibración, el M&TE debe ser capaz de indicar el valor comparado con el estándar.

Precisión y exactitud
Repasemos brevemente la importancia de la precisión y exactitud. Al recoger la información de las medidas, los técnicos del centro de servicio obtienen datos con dos componentes: El valor auténtico de la medida (valor real) y el error asociado a la medida (componentes de precisión y exactitud). Así mismo, entre más pequeño sea el error de medida, más se acerca la indicación o valor medido a la medida real. Como lo muestra la Figura 1, a menudo los términos precisión y exactitud se demuestran y diferencian gráficamente utilizando el ejemplo de la diana.

La precisión se refiere al grado de repetibilidad y reproducibilidad en el sistema de medida, Repetibilidad es la capacidad que tiene un técnico para obtener la misma medida varias veces midiendo el mismo elemento con el mismo M&TE. Reproducibilidad es la capacidad de varios técnicos para obtener la misma medida midiendo el mismo elemento con el mismo M&TE. Normalmente, la precisión del M&TE es evaluada con estudios de repetibilidad & reproducibilidad (R&R).

La exactitud es el grado en el que la medida concuerda con el valor real. La exactitud de un M&TE es evaluada por calibración.

Resolución
De nuevo, podemos simplificar la resolución como la diferencia más pequeña que puede ser medida con nuestro M&TE. Aunque para cualquier medida la exactitud de nuestro M&TE se debe comparar con nuestro rango de tolerancia aceptable.  Tendemos a ver rápidamente la resolución de un indicador o medidor solo por observación. Por esta razón, la resolución es un buen “primer paso” cuando se selecciona un M&TE para una tarea específica. Es decir, si usted tiene una herramienta con una resolución de 1 cm y necesita medir algo con un diámetro nominal de 1 mm+/-0.1mm, ya debería saber que tiene la herramienta incorrecta para el trabajo. 

Existen algunos ejemplos obvios de malas elecciones que podemos identificar en un típico centro de servicio. Nunca pensaríamos utilizar una balanza industrial para pesar los pesos de balanceo o una regla para medir el diámetro de un alambre magneto. En estos dos casos, sabemos que la resolución de un M&TE probablemente es más grande que el valor medido; si la resolución no está ahí, seguramente la exactitud deseada no estará ahí. La selección del M&TE apropiado depende del propósito de la medición. Para balancear, muchos pueden considerar apropiada una balanza con una exactitud de 0.1 gramos que pese hasta 100 gr. Pero, los centros de servicio que balancean rotores de husillos o conjuntos extremadamente largos pueden necesitar algo diferente. 

Para el alambre magneto, la precisión y exactitud requeridas para identificar simplemente un calibre durante la toma de datos pueden ser muy diferentes a las requeridas para determinar si las dimensiones de una muestra de alambre magneto están dentro de la tolerancia de fabricación de las normas NEMA o IEC. Además, una galga para alambres nunca es una buena opción para medir alambres magneto.

Los M&TE escogidos por cada centro de servicio variarán de acuerdo con los requisitos de diferentes fuentes como clientes y entes reguladores o de certificación. Siempre deben evaluarse primero los requisitos de los clientes antes de tomar cualquier decisión sobre el proceso de negocios. Un centro de servicio cuyo cliente más importante es un lavadero de vehículos puede tener requisitos muy diferentes a uno que repara motores relacionados con la seguridad de una central nuclear. Sin embargo, todos los centros de servicio deben escoger los M&TE adecuados para darles una seguridad razonable en las actividades de seguimiento del proceso e inspección y pruebas que realizan.

Cuando se trata del seguimiento de procesos, para la mayoría de parámetros existen muchos medidores y sensores que varían ampliamente por rango, resolución y exactitud. Por ejemplo, si se usa un manómetro en un sistema VPI donde el proceso está calibrado a 80±5 psi (5.5±0.3 bar) y el manómetro tiene un rango de 0-150 psi (0-10.3 bar), es razonable tener una calibración limitada, tal vez de 70-90 psi (4.8-6.2 bar). La Figura 2 muestra un manómetro que puede usarse de esa forma.

Ahora, veamos un parámetro diferente que debe ser controlado durante el ciclo de vacío-VPI. Durante un proceso de impregnación global-VPI, existe una fase de vacío seco y algunas veces también una fase de vacío húmedo. Normalmente, los niveles de vacío seco deben estar por debajo de los 5 Torr (0.007 bar) y es deseable alcanzar un nivel menor o igual a 1 Torr (0.001 bar), especialmente en estatores con bobinas de pletina. El manómetro de la Figura 2 sirve para algún proceso industrial simple pero no es adecuado para las mediciones de vacío en el proceso VPI de un centro de servicio. Examinemos la resolución de la porción de vacío de la escala, desde 0 hasta 30 pul-Hg. La Tabla 1 muestra las unidades para convertir pul-Hg en Torr. Si estamos interesados en niveles de vacío seco menores o iguales a 5 Torr, resulta evidente por que el manómetro de la Figura 2 es inadecuado. No se puede diferenciar un vacío de 0.5 Torr de un vacío de 10 Torr.

Esto no significa que si su centro de servicio tiene un manómetro de vacío inadecuado, no esté logrando niveles de vacío aceptables- esto solo significa que usted no tiene un control de proceso adecuado y no sabe el nivel de vacío que está obteniendo. Una opción más razonable para medir el vacío en un sistema VPI se muestra en la Figura 3. Un manómetro similar a este puede tener un rango de 0.2 a 20 Torr y una exactitud del 20%.

Los centros de servicio deben evaluar cada medida que afecte la calidad del servicio o producto suministrado. Para cada uno, considere el rango de valores posible, así como también la precisión y exactitud de los M&TE necesarios para realizar el trabajo. incluso para los técnicos más calificados y experimentados, contar con los M&TE es crítico para la disposición adecuada de cualquier máquina o componente.

Available Downloads

Considerations for measuring & test equipment (M&TE) resolution

Considerations for measuring & test equipment (M&TE) resolution

By Mike Howell
EASA Technical Support Specialist

Accuracy and precision of measuring & test equipment (M&TE) have been topics of previous Currents articles (November and December 2014). A related topic that was not covered in the previous articles is resolution. The Joint Committee for Guides in Metrology document JCGM 200:2012 defines resolution as “the smallest change in a quantity being measured that causes a perceptible change in the corresponding indication.” Simplified, it’s the smallest difference that can be measured by the subject equipment. The accuracy of the M&TE must be greater than (less accurate) or equal to the resolution. That is, the M&TE must be able to indicate the value that is compared to the standard during calibration.

Available Downloads

Considerations for random to form winding conversions

Considerations for random to form winding conversions

Chuck Yung
EASA Senior Technical Support Specialist

With a steady increase in random wound AC motor sizes and the obvious superiority of the form coil winding, one area where we can help improve customers' motor reliability is by redesigning those large random wound motors to accept form coils. Most repairers would agree that machines rated larger than 600 hp (450 kW) should be designed as form coil machines. Likewise, those rated over 2 kV will be much more reliable as form coil machines.

No one wants to rewind a motor using 60 #14 AWG (62- 1.6 mm) wires in hand. With an abundance of niche suppliers of stator laminations, the cost and practicality of converting a random wound motor to form coil are available to nearly all service centers. Replacement laminations can be punched, laser-cut or water-cut, and supplied with very reasonable delivery times.

Available Downloads

Controlled Environments and Cleanrooms Prevent Contamination in Service Centers

Controlled Environments and Cleanrooms Prevent Contamination in Service Centers

Tom Bishop
EASA Senior Technical Support Specialist

Occasionally we hear the term “cleanroom” used for a winding area that is physically isolated from the remainder of a service center (Figure 1). The main purpose of such an enclosure is to prevent windings and winding material from being contaminated with any dust and dirt (Figure 2) that may be in other parts of the service center. Some service centers construct these enclosures because they strive to provide the cleanest practical environment for winding work, and some also use the enclosure for the bearing installation process. Cleanroom type enclosures can also benefit facilities by helping minimize quality problems and increase the volume of acceptable product.

Here we will explore the distinction between a controlled environment and a cleanroom, the requirements for both, and provide details to help you determine if you want to add a controlled environment or a cleanroom to your facility.

Available Downloads

Controlling Stator Copper Losses in Formed Coil Rewinds

Controlling Stator Copper Losses in Formed Coil Rewinds

Presented by Mike Howell
EASA Technical Support Specialist

EASA’s Energy Policy states that members will strive to ensure that the methods, techniques and materials they use to service and rebuild rotating electrical machines will maintain or improve their energy efficiency, whenever possible. Controlling stator copper losses during rewinds is a significant part of that effort. This webinar recording looks at several aspects of winding design to prevent increased temperature rise and decreased efficiency.

  • I2R losses and conductor area / length
  • Eddy current losses and laminated conductors
  • Circulating current losses and transposed conductors

This webinar recording will benefit service center managers, supervisors and technicians responsible for rewinds.

Available Downloads

Conversión de Aluminio a Cobre: Lo que Necesita Saber

Conversión de Aluminio a Cobre: Lo que Necesita Saber

Jasper Electric Motors, Inc.Carlos Ramirez
Especialista de Soporte Técnico de EASA

¿Recibió un motor antiguo bobinado con alambre de aluminio? Este webinario explicará como realizar la conversión adecuada de alambre de aluminio a alambre de cobre en máquinas de CA y CC, incluyendo ejemplos para el rebobinado de estatores y campos shunt.  Los temas cubiertos son:

  • Sección de los alambre de cobre y aluminio 
  • Alambres AWG y métricos 
  • Devanados de motores de CA 
  • Bobinas de campos shunt
  • Ejemplos 

Este webinario está enfocado a bobinadores, supervisores e ingenieros.

Aluminum to Copper Conversion: What You Need to Know

Presented by Carlos Ramirez
EASA Technical Support Specialist

Have you received a vintage machine that has been wound with aluminum wire?  This presentation explains how to perform a proper conversion from aluminum to copper wire in AC and DC machines, including examples for rewinding stators and shunt fields.  Topics covered include: 

  • Aluminum and copper wire area 
  • AWG and metric wires 
  • AC motor windings 
  • Shunt field coils 
  • Examples of conversion 

This presentation is intended for winders, supervisors, and engineers.

Disclaimer: All video captions and translations are AI-generated.
EASA is not responsible for any inaccuracies that may occur.

Want to test your knowledge after watching the webinar?

TAKE THE QUIZ

Available Downloads

Conversiones de un Bobinado Concéntrico a Imbricado

Conversiones de un Bobinado Concéntrico a Imbricado

Tom Bishop, PE
Especialista Sénior de Soporte Técnico de EASA

Una de las solicitudes más frecuentes a nuestro grupo de soporte técnico es la conversión de un devanado trifásico de concéntrico a imbricado (excéntrico). Una excelente alternativa para dicha conversión es utilizar el programa EASA AC Motor Verification and Redesign (ACR). De hecho, muchos miembros compraron el programa de rediseño y nos han llamado para confirmar sus rediseños a medida que desarrollan su competencia y su "nivel de comodidad" con el programa. Sin embargo, nuestro énfasis aquí no es convencerlo de que compre el programa ACR, sino cubrir los detalles importantes para rediseñar el devanado concéntrico a imbricado.

Available Downloads

Converting motors from horizontal to vertical mount

Converting motors from horizontal to vertical mount

Tom Bishop, P.E.
EASA Senior Technical Support Specialist

Occasionally an end user wants to take a motor designed for horizontal mounting and use it in a vertical position. In this article, we will address some of the key mechanical factors that should be considered when applying a horizontal ball bearing motor in a vertical mounting position. Figure 1 illustrates a horizontal motor in a vertical shaft down position.

These key factors include:

  • Axial thrust load capacity of bearing supporting rotor weight
  • Rotor weight
  • Weight of output shaft attachments
  • Axial thrust from direct connected driven equipment
  • Bearing lubrication paths
  • Bearing lubricant retention
  • Shaft up or shaft down orientation
  • Ingress protection
  • Locking axial thrust bearing

Available Downloads

Converting Vibration Units: Process and Solutions

Converting Vibration Units: Process and Solutions

Gene Vogel
EASA Pump & Vibration Specialist 

As we communicate internationally, language barriers persist. In the technical fields, the metric-imperial units clash is slowly diminishing. (It’s been said the U.S. is going to the metric system an inch at a time.) In the vibration analysis field, metric and imperial units for vibration amplitude both remain prolific. Many vibration analysts are “bilingual” in that respect and are comfortable using either system. But for more casual users who may only encounter vibration data in regard to meeting specs, unfamiliar vibration amplitude units can be a challenge. 

Complicating the situation is the fact that even within one of the systems (metric or imperial), conversion between different vibration amplitude parameters is often not understood. Common vibration amplitude parameters are displacement, velocity and acceleration, and the conversion between them requires applying a factor for the frequency of the vibration. Frequency itself has three different units: cycles per minute (CPM), cycles per second (Hz) and multiples of rotating speed (Orders). Throw in the issue of Peak to Peak (Pk-Pk), Peak (pk) and root-mean-squared (rms), and applying vibration amplitude specifications can be challenging even before one encounters a metric-imperial units situation. (For an easy solution skip to the end of this article.)

Available Downloads

Convirtiendo Unidades de Vibración: Proceso y Soluciones

Convirtiendo Unidades de Vibración: Proceso y Soluciones

Gene Vogel
Especialista de Bombas y Vibraciones de EASA 

A medida que nos comunicamos internacionalmente, persisten las barreras del idioma y en el campo técnico, el choque entre unidades métricas y en pulgadas está disminuyendo lentamente. (Se ha dicho que Estados Unidos está adoptando el sistema métrico y en pulgadas al mismo tiempo). En el campo del análisis de vibraciones, las unidades métricas y en pulgadas para la amplitud de la vibración siguen siendo prolíficas. Muchos analistas de vibraciones son “bilingües” y se sienten cómodos utilizando cualquiera de los sistemas. Pero para los usuarios ocasionales que tal vez solo encuentren datos de vibración con respecto al cumplimiento de las especificaciones, las unidades de amplitud de vibración desconocidas pueden ser un reto.

Lo que complica la situación es el hecho de que incluso dentro de uno de los sistemas (métrico o en pulgadas), a menudo no se comprende como convertir los diferentes parámetros de amplitud de la vibración. Los parámetros comunes de amplitud de vibración son el desplazamiento, la velocidad y la aceleración, y la conversión entre ellos requiere aplicar un factor para la frecuencia de la vibración. La frecuencia en sí tiene tres unidades diferentes: ciclos por minuto (CPM), ciclos por segundo (Hz) y múltiplos de la velocidad de rotación (Órdenes). Si a esto le sumamos las medidas pico a pico (Pk-Pk), pico (pk) y raíz cuadrada media (rms), la aplicación de las especificaciones de amplitud de la vibración puede ser un desafío incluso antes de que uno se encuentre con una situación de unidades métricas-pulgadas. (Para encontrar una solución sencilla, vaya al final de este artículo).

Available Downloads

Crooked Teeth? We’ve Got Braces!

Crooked Teeth? We’ve Got Braces!

How Using Clamps When Pulling Magnet Wire Helps Prevent Splayed Teeth

David Sattler
L&S Electric, Inc.

Unless great care is taken, pulling magnet wire from a motor stator often bends or splays the lamination’s end teeth. Bent teeth, or teeth that have been splayed outward at the ends of the core stack, will likely compromise the quality of the repair job. Studies1 show that motor efficiency may be reduced by splaying end teeth. Even if that reduction in efficiency is slight, any reduction in efficiency results in higher costs and wasted energy.

Even though these performance reductions are seldom noticed by customers, our goal in motor repair is always to produce the highest quality rewind possible. Therefore, we have designed and implemented the use of disc clamps to hold the stator tooth tips in place while pulling magnet wire from the slots. The clamping fixtures described in the photos have helped ensure that we avoid damaging the stator teeth during the stripping process.

Available Downloads

DC Machine Data Sheet

DC Machine Data Sheet

DC machine data form

This form will aid in collecting all needed information regarding a DC machine recieved for repair: nameplate data, armature coil data, armature dimensions, field winding data, field coil dimensions, general winding information as well as job and customer details.

This fillable PDF conveniently helps you save DC machine data for future reference. SImply copy the file or "Save As" to create a form for each motor you repair. The PDF includes a convenient button that can help you easily send DC data to EASA technical support.

Available Downloads

DC Motor Electrical Procedures

DC Motor Electrical Procedures

6
presentations
$30
for EASA members

 

A special discounted collection of 6 webinar recordings focusing on DC motor electrical procedures.

Once purchased, all 6 recordings will be available on your "Downloadable products purchased" page in your online account.

Downloadable recordings in this bundle include:

The Basics: Understanding DC Motor Tests
Presented October 2016

  • Ampere turns of the armature, field and interpole data
  • Determining the best armature coil pitch
  • Verifying interpole circuits
  • Importance of brush angle
  • Equalizers and armature windings

Adjusting Brush Neutral
Presented June 2011

The webinar covers:

  • How to set brush neutral in DC machines.
  • Several methods of setting brush neutral along with the benefits and drawbacks of each.
  • Tips for permanent magnet and series-would machines.
  • Tips on how to recognize problems and settings that affect brush neutral, and what to check if the neutral adjustment seems higher than usual.

Target audience: This presentation is most useful for service center and field technicians involved in the repair of DC machinery, service center managers engineers, or anyone involved in DC motor or generator repair, as well as those who are simply looking to expand their understanding.


Carbon Brushes, Current Density and Performance
Presented June 2019

The lowly brush is underrated and misunderstood. The brush grade, brush pressure and spring tension, as well as the effect of load and humidity are each important to brush performance in DC machines, wound rotor motors, and synchronous machines.

This presentation covers:

  • Importance of brush grade
  • Effect of humidity and load (current)
  • Best practice method for removing brushes to improve performance
  • Brush pressure & spring tension by application
  • Supplemental cooling of slip ring / brush enclosures

Target audience: This presentation will benefit service center technicians and supervisors.


Drop Testing of Fields and Synchronous Poles: Tips to Interpretation
Presented November 2011

This presentation covers:

  • The basics of drop testing, as well as offers tips for interpreting the results.
  • Both the AC and DC drop test are described as well as the advantages and drawbacks for each.
  • For those cases where the drop test results are out of tolerance, this material will guide the technician in determining the reasons for the variation-how to recognize the difference between shorted coils and differences in iron, airgap or other influences.
  • Rewind and assembly tips will also be discussed, where they influence the results of the drop test.

Target audience: This presentation is most useful for service center and field technicians with at least 5 years experience, service center managers, engineers, or anyone involved in DC motor or generator repair, as well as those who are simply looking to expand their knowledge.


Final Testing of DC Machines
Presented September 2011

To assure a quality repair, there specific tests (such as neutral-setting and interpole-armature polarity) that should routinely be performed on every DC machine. When done correctly, the simple procedures presented will prevent scenarios such as that late night phone call from an irate customer whose DC machine is "arcing like a fireworks show."

Target audience: Technicians with at least a moderate lever of experience in DC machine repair will benefit from this session.


Advanced DC Testing
Presented April 2012

This presentation shares tips that are not covered in “Fundamentals of DC: Operation and Repair Tips,” such as:

  • Tips for interpreting armature and interpole tests
  • Finding that ground in the newly rewound armature
  • Interpreting questionable drop test results

It also covers final assembly tests including how to determine whether the cause of sparking is the interpoles or the armature.

Target audience: This presentation is aimed at the experienced technician and supervisor.

Desmonte e Instalación de Acoplamientos

Desmonte e Instalación de Acoplamientos

Tom Bishop, P.E.
Especialista Sénior de Soporte Técnico de EASA

Este artículo abordará los métodos para demontar e instalar acoplamientos en ejes rectos o cónicos. En él se describirán los métodos que usan buenas prácticas más comunes.

Available Downloads

Determinando las Fuentes de Ruido en los Motores Eléctricos

Determinando las Fuentes de Ruido en los Motores Eléctricos

Tom Bishop, P.E.
Especialista Sénior de Soporte Técnico de EASA

A menudo, determinar la fuente del ruido en un motor eléctrico es más un desafío que corregirla. Sin embargo, un enfoque metódico puede reducir las causas posibles y por consiguiente facilitar la resolución del problema. Una advertencia aquí es que, si el ruido está relacionado con el diseño del motor, es decir, por un defecto de fabricación, puede que no sea posible o que no sea práctico obtener una solución.

En un motor eléctrico existen tres fuentes principales de ruido: Magnética, mecánica y por ventilación. Aquí discutiremos las causas y las características de cada una de ellas, proporcionando directrices para eliminar o reducir el ruido asociado con dichas fuentes.

Available Downloads

Determining Impeller Trim Diameters for Pump Re-Applications

Determining Impeller Trim Diameters for Pump Re-Applications

Gene Vogel
EASA Pump & Vibration Specialist

Whether it is a simple re-application of a pump from 50 Hz to 60 Hz (or vice versa), the repurposing of an existing pump, or the application of a new pump to an existing application, determining the proper trim for an impeller can be challenging. This presentation reviews: 

  • Basic impeller design criteria 
  • Methods of evaluating the head and flow and power implications of trimming impeller outside diameters

This recording will benefit pump technicians, engineers and sales personnel.

Available Downloads

Determining Noise Sources in Electric Motors

Determining Noise Sources in Electric Motors

Tom Bishop, P.E.
EASA Technical Support Specialist

Determining the source of noise in a motor is often much more challenging than correcting it. However, a methodical approach to investigating the noise can narrow down the possible causes and therefore make it easier to resolve the noise issue. There is a caveat. If the cause of the noise is due to something in the motor design, that is, a manufacturing defect or anomaly, a solution may not be possible or practical.

There are three primary sources of noise in a motor: magnetic, mechanical and windage. We will discuss the causes and characteristics of each and provide guidance in dealing with reducing or eliminating the noise associated with them.

Available Downloads

Dimensionamiento de cables de salida para máquinas trifásicas

Dimensionamiento de cables de salida para máquinas trifásicas

Mike Howell, PE
Especialista de Soporte Técnico de EASA

Siempre que sea posible, EASA recomienda usar el cable de salida especificado por el fabricante original del equipo. Si no está disponible, la sección 6 del Manual técnico de EASA proporciona orientación al respecto y hay una calculadora en línea disponible en go.easa.com/calculators para determinar el tamaño mínimo recomendado según la clasificación de temperatura, la corriente esperada, la cantidad de cables y el tipo de conexión. Este artículo describirá la función de la calculadora. Es importante tener en cuenta que no existe una respuesta correcta en este proceso cuando se desconoce la información original. Al seleccionar un cable conductor, se deben considerar los siguientes aspectos

Available Downloads

Don’t Let Your Biggest Asset Become Your Biggest Liability

Don’t Let Your Biggest Asset Become Your Biggest Liability

Paul K. Graser, CFE
Sr. Investigative Specialist
Edward Jones
St. Louis, Missouri

A company's most significant investment is typically in the people they hire. Companies spend time and money on training, but it's a necessary cost of business.  

Usually, small businesses hire employees based on previously established relationships or referrals from trusted contacts. The extent of formal background checks varies from business to business. Small businesses often don't have the resources to investigate prospective employees as comprehensively as larger corporations do.  

Despite the size of a company or the number of background checks performed, even the most honest employee can make a bad choice that could negatively impact the company. Fortunately, there are controls business owners can put in place to prevent employee fraud.

Available Downloads

Don’t Underestimate the Power of Educating Your End Users with EASA’s Resources

Don’t Underestimate the Power of Educating Your End Users with EASA’s Resources

Jacob Voorhies
Technical Education Committee Member
Mid Kansas Winding

For those of us who have stumbled into the unique niche of the electromechanical repair industry, we troubleshoot and diagnose issues with AC and DC electric motors all the time. Yet, almost daily since I have had the privilege of joining the ranks of our industry, I run into everyday decision makers who simply don’t understand that every motor is not the same. I’ve worked hard in my professional life to always try and put myself in my customers’ shoes. I think those of us in the electromechanical repair industry must be able to switch gears and educate our customers and colleagues. We need to stop and really look at what we do from the outside looking in.

Recently, I had a customer at a major refinery call me and say they needed a quote for a 1,000 hp motor. Like any good vendor, I tried to ask a battery of questions and understand their needs. The customer said, “Oh, just quote me any 1,000 hp.” He needed some budget numbers, and I needed to stop cringing at that idea. The customer said he was placed in charge of getting critical equipment spare motors, but he struggled with voltage, number of poles and frame sizing to name a few things. This motor was just the first item at the top of a long equipment list. I share this story not to make fun of this individual but to help everyone reading this article adopt, at least temporarily, the perspective of someone outside of our industry. Generally, many of our customers don’t know what they don’t know.

As electromechanical professionals, we must be able to break things down for a variety of educational backgrounds and skill sets. This includes the process of obtaining adequate information to deliver preliminary pricing to a potential customer. Ultimately, we hope to get the repair in the door. To help make my job easier, I routinely keep copies of EASA’s Electrical Engineering Pocket Handbook and the ANSI/ EASA Standard AR100-2020: Recommended Practice for the Repair of Rotating Electrical Apparatus close at hand. Some things are as simple as being able to talk through the needed preliminaries. Other times we help the customer understand the diversity of electric motors. What it takes to repair one motor does not accurately explain all repairs for all motors from a customer’s facility.

The onsite technician can understand the basics of wiring a motor up if there is a connection data plate provided by the original equipment manufacturer (OEM). When there is not a connection data plate provided is an opportunity for an electromechanical professional to guide the customer through the use of the Electrical Engineering Pocket Handbook to get the customer’s motor up and running. This is another reason I always have copies on hand for my customers to take back to their facilities. For some, they understand the intricacies of an electric motor. That end user understands that there are different RPMs to contend with.

The Electromechanical Resource Center Focuses on End-User Educational Materials

Short on time and want to quickly find educational materials to give to your end users? Visit easa.com/erc. There you will find a valuable 40-page booklet titled Getting the Most From Your Electric Motor in both English and Spanish. This booklet covers topics like:

  • Installation, startup and baseline information
  • Operational monitoring and maintenance
  • Motor and baseline installation data
  • How to read a motor nameplate
  • Motor storage recommendations

At easa.com/erc, you’ll also find versatile resources like Good Practice Guide to Maintain Motor Efficiency, The Effect of Repair/Rewinding on Premium Efficiency/IE3 Motors and ANSI/EASA Standard AR100-2020 (available in English and Spanish).

You may provide your customers links to these resources at easa.com/erc, and/or you may purchase printed copies to give to your customers. See my.easa.com/store.


Even fewer end users understand that there is a standardized frame system that is utilized. The National Electrical Manufacturers Association (NEMA) assigns electrical motor frame sizes based on enclosures, horsepower and speed. NEMA is predominantly used in the North American markets. The International Electrotechnical Commission (IEC) assigns electrical motor frame sizes based largely on shaft height. IEC is the metric standard worldwide for electric motors. As a vendor, we must sometimes help our customers understand that some of their equipment manufactured overseas does not always have a readily available off-the-shelf option in the United States.

Something as simple as knowing the parts and pieces of the electric motor itself goes a long way toward helping many customers. What is standard nomenclature within the electromechanical repair industry might be hieroglyphics to the team member at your biggest customer’s purchasing table. Knowing the parts of an electric motor AND being able to concisely explain what those parts are and what they each do helps with the education of the customers we serve. Even necessary power transmission items can become a sticking point for getting the job done, delivered and invoiced. When a customer says he/she needs a new coupler to go with the electric motor repair, we as electromechanical professionals must take some time to educate the customer so that he/she understands the application.

We have the ability to provide our customers links to several educational tools thanks to easa.com. Through EASA, we have access to printed educational resources that will help us educate our customers. I’ve helped several customers by giving them a copy of these educational materials. As a vendor, I am trying every day to put myself in my customer’s shoes, help them complete a project with the help of EASA’s educational resources and hopefully build my business as an additional benefit.

Available Downloads

Drop Testing of Fields and Synchronous Poles: Tips to Interpretation

Drop Testing of Fields and Synchronous Poles: Tips to Interpretation

This presentation covers:

  • The basics of drop testing, as well as offers tips for interpreting the results.
  • Both the AC and DC drop test are described as well as the advantages and drawbacks for each.
  • For those cases where the drop test results are out of tolerance, this material will guide the technician in determining the reasons for the variation-how to recognize the difference between shorted coils and differences in iron, airgap or other influences.
  • Rewind and assembly tips will also be discussed, where they influence the results of the drop test.

Target audience: This presentation is most useful for service center and field technicians with at least 5 years experience, service center managers, engineers, or anyone involved in DC motor or generator repair, as well as those who are simply looking to expand their knowledge.

Dual voltage: Twice as much to go wrong?

Dual voltage: Twice as much to go wrong?

Dealing with voltage ratios and wye/delta connections

Chuck Yung 
EASA Technical Support Specialist 

In the world of three-phase electric motors, one area which seems to cause great confusion is the use of electric motors which are rated for more than one voltage. Especially today, with so much international commerce, it is understandable that different meanings might be assumed for this simple term. 

Those readers in the U.S. are ac­customed to “dual-voltage” 230/460v ratings. The 1:2 ratio lends itself to 9-lead windings, with connection combinations such as 1- and 2-circuit wye, 2 and 4-delta, 3 and 6-wye, etc. The common factor is that the circuits and the possible operating voltages have the same 1:2 ratio.

Available Downloads

Dynamic Balancing on Pump Impellers

Dynamic Balancing on Pump Impellers

Gene Vogel
EASA Pump & Vibration Specialist

As with most other machines commonly repaired in EASA service centers, dynamic balancing on pump impellers is an important concern. Excessive imbalance imparts forces on bearings, reducing their lives and subjecting machine mountings to vibratory energy that deteriorates foundations.

Pump rotors are quite different than more familiar electric motor rotors from a dynamic balance perspective. The mass of an electric motor rotor is between the bearings, and the rotors are longer than their diameters. Many pump impellers are mounted in an overhung configuration, and the impellers will likely be narrower than their diameters. Narrow components may require special rules for allocating allowable residual imbalance (per ISO 21940-11), and special balancing techniques may be needed for efficient balancing in the balancing machine.

Available Downloads

EASA Accreditation: End-user and motor manufacturer perspectives

EASA Accreditation: End-user and motor manufacturer perspectives

Jerry Peerbolte
J. Peerbolte & Associates

Editor’s Note:  Following are some of the key findings in two industry research projects EASA conducted in conjunction with CFE Media and presented at the 2014 and 2015 EASA Conventions. Additional findings on other subjects will be published in future articles. 
 
A major strategic initiative for EASA was the development of an independent accreditation program for electric motor repair service centers. The most recent industry research projects afforded the opportunity to solicit the views of end-user customers and electric motors manufacturers about this initiative.

Let’s begin with end-users (customers). The research with this group was conducted in early 2014, prior to the official launch of the accreditation program. Hence, our research questions simply dealt with the general concept of such a program, as opposed to specific details of EASA’s.  

We found strong support for accreditation of motor repair service providers, with just over half of end-user respondents in favor.

Perhaps the more significant findings resulted from the follow-up questions presented to those who favored accreditation. As noted above, more than 90% suggested it would improve the quality of motor repairs. A similar percentage suggested they would add accreditation as a requirement to their motor repair specification, with nearly two-thirds showing a willingness to replace their existing motor repair service provider if they do not achieve accreditation. Finally, over half suggested they would also be willing to pay an added cost (on average, 10% more) for a repair from an accredited service provider.

 

Turning next to the motor manufacturer’s views, again there was strong support. This research conducted in the 2015 research project asked questions of senior executives from nine different companies. While most were not familiar with many details of EASA’s program, they expressed the ideas presented above.

EASA Marketing Manual

EASA Marketing Manual

EASA's Marketing Manual is a comprehensive 131-page guide that teaches a variety of marketing methods and explains how to use them in the local marketplace. This document contains background information on external factors in the marketplace and major observable trends in the business world, including consolidation of the customer/supplier base; e-commerce and chain supply management.

The material is presented in two sections:

  • Section I: The Marketing Plan
    This worksheet matrix is short and simple, but quite comprehensive in scope. It is a classic marketing planner used by companies in many industries to identify problems and opportunities for business growth.
  • Section II: The “How To”Section
    Here, we cover in “how to” language the various marketing tools that will help fulfill the business growth strategies set out in Section I.
    • Public Relations
      • News Releases
      • Customer Case Studies
      • Newsletters
      • Speakers' Bureau
      • E-Commerce Strategies
      • Trade Shows
      • Open Houses
      • Education and Training
    • Direct Marketing
      • Database Marketing
      • Direct Mail
      • Telemarketing
      • Lead Qualification
      • Direct Mail Costs
      • Direct Marketing Strategic Planning Worksheet
    • Sales Literature
      • EASA Materials
      • Capability Brochure
      • Manufacturer-Supplied Literature

Available Downloads

EASA Member Uses School Visits as Educational and Recruiting Tool

EASA Member Uses School Visits as Educational and Recruiting Tool

Olivia Deahl
Marketing Manager
Hibbs ElectroMechanical, Inc.

All of us in the industry are struggling with workforce issues. The complaints seem to be consistent across the board. We can’t find people that want to work, or if we can find people to work, we can’t find enough of them fast enough to meet demand. Not only are we feeling the effects of labor shortage, but we are also feeling the effects of how our current workforce isn’t getting any younger. We need people to teach our team's tribal knowledge to, and the urgency is real. The leadership team at Hibbs has made it a priority to confront these issues and find a proactive solution, just like we do for our customers. The answer: be involved.

Available Downloads

EASA membership: Your opportunity to build a trusted alliance network

EASA membership: Your opportunity to build a trusted alliance network

Jerry Gray
Sloan Electromechanical Service & Sales

Being an EASA member can be so much more than putting the Associa­tion’s logo on your company web site and making the occasional “help!” phone call to one of EASA’s talented technical support specialists.  Of course there are so many other benefits. One of them is having the opportunity to build a “trusted” alliance network with other EASA members; doing this can truly help your customer, and thus help your business. When I use the term “trusted” alliance partner throughout this article, my intent is to point out the value of trust between other EASA members.

What is meant by “trusted”?
“Trusted” alliance means first and foremost that each EASA member respects the service or product being procured from the other member. As part of forming the trust, this requires that the owner or principals of the two EASA firms meet each other and agree that it is beneficial to do business with each other. 

As the ethical and legal basis of a business transaction ultimately rests with the credibility and honesty of each principal in both firms, a genuine re­spectful relationship between the two EASA members will result from the first successful business transaction.  

A second successful transac­tion result will yield TRUST, as trust is given after RESPECT is earned.  Each of these EASA members has now formed or expanded their trusted alliance network.This actually makes working within our industry much more enjoyable!

What does a trusted alliance look like?
To your customer, it looks trans­parent. Their perceptions of your company will evolve as your company demonstrates it can meet their growing expectations.

To your sales people, they now have a larger shopping basket with more resources.  They will have fewer opportunities in figuring out how to say politely say “no, we don’t do that or offer that.” Their sales will increase as will their attitudes!

From a detail perspective, here are some examples:
You are presented with a repair opportunity that is beyond your service center’s equipment handling capability.  There are some things your service center can do, but from a liability perspective, you recognize that your trusted alliance partner is better served if he does those tasks. Because of your relationship with the trusted alliance partner, both of you can have an honest, open discussion of the best way to handle the opportunity and manage the liability.  

Your organization chooses to: 

  1. Manage the customer transaction 
  2. Review the quality process and test reports from your alliance partner
  3. Perform the equipment commis­sioning with your customer

Your firm’s margin will be quite a bit less, but so is your liability.  In fact, you have leveraged your company’s resources by sourcing this work while maintaining the existing service center production schedule. Therefore, using your trusted alliance partner is actually more profitable as your  direct cost and overhead is minimal.

Another alliance example is sourc­ing equipment for your customer from a distributor who is an EASA member.  By using the trusted alliance partner, meaning both principals have met, respect has been earned and trust given, the alliance partner is offering your organization the most favorable product price to enable the sale. While the normal product margin may not be possible, your company is meeting your customer’s needs, which may lead to more opportunities.  

One other alliance example is sub­letting work to a trusted alliance part­ner to maintain a customer’s schedule. This can happen when the customer has a scheduled equipment shutdown and your service center load is already nearly full.  By having a trusted al­liance partner who is willing to do some component work (machining bearing fits, stator only rewinds, etc.), you are leveraging your service center and making the best use of everyone’s resources. 

Not every transaction is going to be in the best interest of your customer in using the alliance network.  Careful, judicious evaluation of your market, the value your organization adds, potential liability being incurred or shared and strengthening customer confidence are some of the important factors to consider.

Not every EASA member may be­come part of your trusted alliance net­work. But every EASA member has the potential of being in an alliance network.

How do you start an alliance?  
Meet your EASA peers and dis­cover their strengths!  Having great conversations, discovering shared values and openly acknowledging one another’s strengths is the foundation for starting a new alliance relationship.   

Make new business friends and potential trusted alliance network partners by attending chapter and re­gional meetings, joining a Roving Chief Executive (RCE) group, serving on one of EASA’s committees and attending the annual convention.    

Many EASA members already are part of a trusted alliance network.  They will readily agree that working in an alliance network has helped their customers and strengthened their business.

As I noted at the beginning, the benefits of being an EASA member can be much, much more than displaying the logo and an occasional phone call to St. Louis.  By participating in the networking opportunities I mentioned earlier, you have a great opportunity to team up, talk to an EASA member, share an experience (good or bad) and discover what a larger, enjoyable EASA community there is through being part of a “trusted” alliance. 

Available Downloads

EASA Repair Facilities: Decades of Industrial Recycling and Sustainability

EASA Repair Facilities: Decades of Industrial Recycling and Sustainability

Chris Culver
Marketing & Industry Awareness Committee Member
Cyntek Group Inc.

Here’s an important fact we should all be promoting from both a marketing and an industry awareness perspective: EASA members’ decades-long positive impact to the environment and our industry’s responsible industrial waste management.

Even if it hasn’t been part of a formal program, EASA electric motor repair facilities have long been leaders in industrial recycling and sustainability programs that aim to address the environmental impact of electric motors and promote sustainable practices in their lifecycle. Our recycling processes have been in existence long before the recycling blue boxes or before the terms “going green” and “green new deal” were part of the lexicon.

When EASA firms raise public awareness about what we do and the importance of recycling electric motors, it helps our customers, government entities, and the general public understand the overall benefits, which can then lead to a greater understanding of responsible recycling and sustainability.

Electric motor recycling programs are aimed at collecting, recycling, and properly disposing of non-repairable electric motors to reduce industrial waste and promote environmental sustainability. Electric motors are commonly found in various appliances, power tools, machinery, and of course industrial equipment, and they contain valuable materials that can be reclaimed and reused, such as copper and steel.

Available Downloads

EASA Roving Chief Executive program - a value-added benefit

EASA Roving Chief Executive program - a value-added benefit

Chris Connor Globe Electric Co., Inc.
Pittsburgh, Pennsylvania 
Management Services Committee Member

When most people think about “social networking,” Facebook and Twitter probably come to mind. That’s great for the Internet, but for me there’s another (and much better) option. About twice a year, I participate in EASA’s own version of social networking: the Roving Chief Executive (RCE) Program.

EASA defines this program as “the bringing together of non-competing EASA owners/managers with similar problems for the exchange of information. EASA owners and managers meet in a confidential, small group setting to pool their talents and experience to solve mutual problems and concerns.”

A typical meeting schedule
Although it is up to RCE groups to set their own schedule and agenda, most generally begin on Friday and end on Sunday. The program can begin with a tour of the host’s service of business and speak candidly with the service center's employees. Of course each group is free to conduct meetings in any way it wants. On the following day, the meeting host focuses discussions on certain key problem areas. Information should be shared freely and often with a detailed look into the financials and other supporting documentation such as the EASA Operating

In most cases, the evening segues into a casual dining experience where the discussion is informal. Often times group members and their families become close friends who regularly contact each other between meetings to aid each other in specific situations that arise throughout the year.

The “Bruise Brothers”
My own situation has me as a member of the “Bruise Brothers” group (each group has a name that members agree upon). My feeling is that the group is so named for the brutally honest discussions and the tough love we dispense. This group’s first meeting was held on July 1, 1995 at Joilet Equipment in Joliet, Illinois. The group met last in September 2009 when we got together at my company, Globe Electric, in Pittsburgh, Pennsylvania.

There are no signs that the group will slow down anytime soon. We already have our next meeting set for this month (February) at Stewart’s Electric Motor Works in sunny Orlando, Florida. (Hint to the cold weather members: Always schedule your winter meetings in the southern-most locations.)

A valuable, rewarding experience
I had asked the “brothers” in my group to provide me with some assistance with filling the blank spaces in this article. I was amazed at the similarity of the responses. All stressed the importance of the close friendships they have formed through the years. Additionally, it was stressed that all attendees will leave with something concrete they can use to benefit their own companies. One of the members in my group calls us “his personal group of professional consultants.”

During my time in the “Bruise Brothers,” I have learned more from these meetings than any business class I attended in college. The “real world experience” that this group of owners and managers brings to the table is priceless. I urge every EASAn to look into this program.

LEARN MORE ABOUT THE RCE PROGRAM

Available Downloads

EASA Tech Notes

EASA Tech Notes

The latest revisions of EASA Tech Notes are now included as part of the EASA Technical Manual (as of 2012). Tech Notes will no longer be issued as separate documents once they have officially be incoporated into the EASA Technical Manual.

The list below will help you locate these latest revisions.

List updated 10/1/2019

Number Title Page of the EASA Technical Manual
1 Hoist Troubleshooting Withdrawn
2 Function of the Interpole in DC Machines 3-29
3 Connecting the Variable-Speed Commutator Motor 2-175
4 Frog-Leg Windings for DC Machines 3-49
5 Dynamometer Testing Electric Motors 7-30
6 New International Connection Diagrams for Foreign 6- and 12-Lead Wye-Delta Motors 2-40
7 Suffixes to NEMA Frames 2-6
8 Understanding Motor Efficiency and Power Factor (replaced with The Impact of Voltage and Frequency Variation on Motor Life and Performance) 2-83
9 TIG-Welded Commutator Connections 3-47
10 Winding Connections for Multi-Mode Three-Phase Motors 2-165
11 Voltage Stresses in Three-Phase, AC Motors (Withdrawn and replaced with: Voltage Stress: Not as Simple as It Sounds) 2-218
12 Conversion Factors for Lap and Concentric Windings 2-188
13 Solid Round Magnet Wire Data 6-2
14 The Commutator and Its Maintenance 3-41
15 Some Aspects of Magnetic Centering Effects on Sleeve Bearing Induction Motors 10-97
16 Guidelines for Maintaining Motor Efficiency During Rebuilding 2-99
17 Stator Core Testing Withdrawn
18 Troubleshooting a DC Motor at the Job Site 3-53
19 Lubrication of Rolling Bearings in Electric Machines Withdrawn
20 Cause and Analysis of Anti-Friction Bearing  Failures in AC Induction Motors (Now titled: The Cause and Analysis of Bearing Failures in Electric Motors) 8-33
21 Thrust Anti-Friction Bearings for Vertical Motors (Now titled: Understanding and Adjusting Thrust Rolling Bearing Systems for Vertical Motors) 8-23
22 Brushholders and the Performance of Carbon Brushes 3-33
23 Testing of Squirrel Cage Rotors 7-27
24 UL 1446 Systems of Insulating Materials 6-18
25 Rewinding Inverter Duty Motors 2-221
26 Can Energy Efficient Motors Be Rewound Satisfactorily? (replaced with The Effect of Repair/Replace
on Motor Efficiency)
2-102
27

The Cause and Analysis of Bearing and Shaft Failures in Electric Motors
• Bearing Failures
• Shaft Failures


8-33
10-101

28 Assuring the Mechanical Integrity of Electric Motors 10-4
29 Application Considerations of Pulse-Width Modulated Inverters 5-33
30 Fabrication of Replacement Shafts For Electric Motors 10-119
31 The Cause and Analysis of Stator and Rotor Failures in AC Induction Machines 2-120
32 Standards for Dynamic Balancing 10-17
33 Taking Data on Form-Wound Motors and Generators 2-235
34 PWM Amplifiers 5-8
35 Rewinding Form-Wound Motors and Generators 2-241
36 Armature Banding With Fiberglass 10-93
37 Interspersed Windings: What Are They? 2-153
38 Repairing Sleeve Bearings 8-42
39 Procedure Writing: It Takes A Little Time, But The Results Are Worth It Withdrawn
40 An Analytical Approach to Solving Motor Vibration Problems 10-27
41 Electric Motor Shaft Analysis 10-115
42 Procedures for Checking End Play in Ball Bearing Machines 8-50
43 Making and Installing a New Motor Shaft 10-123
44 Guide for Procuring Form Wound Coils for Motors and Generators 2-239
45 Servo Drives 5-24
46 The (Potential) Pitfalls of Parallel Circuits 2-211
47 Concentric-to-Lap / Lap-to-Concentric Conversions 2-177
48 Squirrel Cage Rotor Testing See Section 7
49 Simple Troubleshooting of Amplifiers in the Field 5-17

EASA Technical Manual

EASA Technical Manual

REVISED September 2022!

The EASA Technical Manual, containing more than 900 pages of information specific to electric motor service centers, is available FREE to EASA members as downloadable PDFs of the entire manual or individual sections. The printed version is also available for purchase. Each of the 13 sections features a detailed table of contents.

VIEW, DOWNLOAD OR PURCHASE

EASA Winding Database and Verification and Redesign Program: An Easy-to-Use Solution When Faced with Bare Core Winding Challenges

EASA Winding Database and Verification and Redesign Program: An Easy-to-Use Solution When Faced with Bare Core Winding Challenges

Gene Vogel
EASA Pump & Vibration Specialist

The EASA AC Motor Verification & Redesign - Version 4 software (ACR-MotorDb) is a powerful tool for service centers providing the capability to meet their customer’s needs for AC stator and wound rotor redesigns. In most cases, the data from the existing winding is recorded when that winding is removed from the core. But occasions arise where that original data is not available; it may have been recorded incorrectly or a different service center may have stripped the core but not completed the repair. In those cases, the service center must come up with a new “bare core” winding design. ACR-MotorDb has some specific features to address this need.

LEARN MORE ABOUT THE SOFTWARE

HOW TO CALCULATE A WINDING FROM A BARE CORE

The MotorDb segment of the program is the EASA Winding Database compiled over decades from winding data submitted by EASA members. With over 300,000 winding records, it is likely that windings similar to the original winding are available in MotorDb. By simply searching the database for the core dimension criteria, a list of prospective matching windings is returned. A winding from the database does not have to match the original motor nameplate exactly to be used as basis for the bare core design. When a matching winding is selected, that data can be automatically transferred to the Redesign program where modifications needed to match the desired criteria can be adjusted. The process is smooth, effortless and accommodates most 3 phase induction motor windings.

The first step is to display a list of prospective windings that closely match the bare core dimension criteria. Enter the core length, bore diameter, number of slots and poles into the MotorDb search dialog box. As an example, we will search for a 12” core length, 14” bore diameter and 72 slots for a 125 HP, 6 pole Marathon motor. Initially enter only the core dimensions, number of slots and number of poles (Figure 1); the Get Count feature will quickly return the number of matching records. If the result is about 50 or fewer motors, click OK to retrieve those records into a spreadsheet format where the records can be sorted by columns and reviewed. If the Record Count is too large, enter additional criteria to narrow the search. For our example, 44 records were found, and the resulting spreadsheet is illustrated in Figure 2.

The spreadsheet can be sorted by columns to easily review the data. It is useful to sort by the AirDensity (AGD) and Power (Pwr) columns to assess if the bare core is a good candidate for the desired resulting winding. If there are several windings with the desired power rating and the AGD is within acceptable limits, there is assurance the redesign will be successful. For our example, there are 16 windings rated at 125 HP and 10 of them are Marathon motors. So, in this example, it is likely original factory data is available. Of course, that is not always the case. Suppose our bare core is a Siemens motor, which is not listed. We can still select a different manufacturer winding as the basis for our bare cored design. Select one of the windings from the spreadsheet that matches the desired nameplate data as closely as possible. The full winding data will be displayed in an editor (Figure 3).

This original data record was in the database so no redesign was necessary; the bare core can be wound directly from the database record. Such is not always the case, and the EASA software has a function in MotorDb to transfer data from a MotorDb winding record to ACR for redesign. The Send to ACR function in MotorDb creates a new record in ACR where all the ACR redesign functions are available. Taking our example motor, suppose the desired winding is 575 Volts. MotorDb records are only 230 or 460 Volts.

Figure 4 illustrates a MotorDb record sent to ACR and the Volts redesigned from 460 Volts to 575 Volts. The winding is redesigned for 575 Volts and the connection was changed from 6Y to 3Y to keep the Volts per Coil within acceptable limits (Figure 5).

The combination of the EASA Winding Database and the Verification and Redesign program is an easy-to-use solution when presented with bare core winding challenges. For complete step-by-step instructions on bare core redesign, view the tutorial video How to calculate a winding from a bare core available at go.easa.com/wbc.

Available Downloads

EASA’s Next Gen Network on LinkedIn

EASA’s Next Gen Network on LinkedIn

Nominate an Employee Today

By Jan Schmidlkofer
Management Services Committee Chair
K&N Electric Motors, Inc.

EASA’s next generation of leaders is as important as our current leaders. In your company, they are frequently one of your unofficial leaders and can set the tone from behind the scenes. Typically, these unofficial leaders are knowledgeable, hardworking and care about what is going to happen to the business, as well as to their futures. These are the gems you don’t want to lose! Your problem? You don’t have a management/leadership opening for them.

Now is the moment to let them know you “see” them, and you respect what they bring to your organization. The EASA Next Gen Network on LinkedIn provides an opportunity to both acknowledge your star employee(s) and present an opportunity for personal and professional growth. The Next Gen Network is a place for growing industry leaders to connect, share ideas and discover solutions together. Nomination is the act of formally choosing a person. This is not a “by the way, as you’re passing in the hallway” conversation but the thoughtful consideration of a person’s attributes and qualifications. This type of recognition often lends credibility to their work and creates an attitude of healthy pride.

Easy steps to improve quality at your service center

Easy steps to improve quality at your service center

Charles Bailey
Technical Education Committee Member

Most of us have heard the remark: “We’ve done it this way for the past 25 years. Why would we want to change now?”  But most of us also know that this kind of thinking can get us in trouble. Some of the methods that have been utilized over a long period of time are not necessarily the best; they could affect your business. Many times these processes are based on convenience rather than acceptable procedures.  

Available Downloads

Economic challenges spark new division + successful ideas for inside sales

Economic challenges spark new division + successful ideas for inside sales

Kevin Krupp
York Repair, Inc.
Bay City, Michigan
Marketing & Industry Awareness Committee Member

Like many EASA firms, York Re­pair, Inc. has been heavily impacted by the recession. Our location in Mid-Michigan, with a heavy automo­tive manufacturing customer base, has created additional challenges. However, we’ve found that with each challenge comes the potential for op­portunity.

To meet the current challenge, we decided to re-allocate some of our staff to a new venture called RepairZoneTM, a division that specializes in indus­trial electronics and servo motor sales through exchange, repair, or purchase. RepairZone is primarily a Web-based division, accessible at www.repair­zone.com; one of our main goals is to drive traffic to the site.  

Available Downloads

Economy 2020 and Beyond: Seeking Clarity

Economy 2020 and Beyond: Seeking Clarity

Brian Beaulieu
ITR Economics

This highly-rated economist will discuss the leading economic indicators, which continue to be in chaos given the worldwide pandemic. He will recommend the best course of action for the most important part of the economy – you and your business.

Efectos de los armónicos en los rotores de jaula de ardilla

Efectos de los armónicos en los rotores de jaula de ardilla

Chuck Yung
Especialista Sénior de Soporte Técnico

Solía bromear con que si mencionas la palabra armónicos, los ingenieros se emocionan mientras que los ojos de los que no lo son se nublan. La verdad es que los armónicos se pueden entender fácilmente cuando se explican en términos sencillos. Estos son simplemente múltiplos de la frecuencia fundamental, con secuencia positiva, cero o negativa. La frecuencia fundamental es la frecuencia de línea, también llamada armónico de primer orden, que es de 60 Hz en América del Norte o de 50 Hz en la mayor parte del resto del mundo.

Otros armónicos (quinto, séptimo, etc.) se pueden ver como ese orden multiplicado por la frecuencia fundamental, o visualizarse como si tuvieran ese número de formas de onda en la misma distancia que una sola forma de onda de la frecuencia fundamental. Entonces, en un sistema de 60 Hz, el quinto armónico es 5x60 o 300 Hz. Habrá 5 formas de onda completas en el lapso de una sola forma de onda de 60 Hz. Cuando las porciones positiva y negativa de la onda sinusoidal son simétricas, los armónicos de números pares no existen.

Cualquier armónico que sea múltiplo de tres, en el mundo trifásico, es un armónico de secuencia cero; y, cuando estamos considerando un sistema de potencia sinusoidal, se cancela (a excepción de los alternadores síncronos, que están fuera del alcance de esta discusión).

Available Downloads

Effects of Harmonics on Squirrel Cage Rotors

Effects of Harmonics on Squirrel Cage Rotors

Chuck Yung
EASA Senior Technical Support Specialist

I used to joke that if you mention harmonics, engineers get excited while the eyes of non-engineers glaze over. The truth is that harmonics can be easily understood when explained in layman’s terms. Harmonics are simply multiples of the fundamental frequency, with positive, zero or negative sequence. The fundamental frequency is line frequency – also called the first order harmonic -- that being 60 Hz in North America or 50 Hz in most of the rest of the world.

Other harmonic numbers (5th, 7th, etc.) can be viewed as that order times the fundamental frequency, or visualized as having that number of waveforms in the same distance as a single waveform of the fundamental. So in a 60 Hz system, the 5th harmonic is 5x60 or 300 Hz. There will be 5 complete waveforms in the span of a single 60 Hz waveform. When the positive and negative portions of the sine wave are symmetrical, even number harmonics are non-existent.

Any harmonic that is a multiple of three, in the three-phase world, is a zero-sequence harmonic; and, when we are considering a sinusoidal power system, cancels out (except for synchronous alternators, which are outside the scope of this discussion).

Available Downloads

El Programa de Certificación de EASA Brinda a las Empresas una Ventaja Estratégica muy Necesaria

El Programa de Certificación de EASA Brinda a las Empresas una Ventaja Estratégica muy Necesaria

Por Matthew Conville, M.B.A, P.E.
Especialista de Soporte Técnico de EASA

¿Alguna vez has escuchado estos refranes?

  • “Nunca tienes una segunda oportunidad para causar una buena primera impresión”.
  • “Es más fácil hacer bien un trabajo que explicar por qué no lo hiciste”.
  • “Calidad significa hacerlo bien cua ndo nadie está mirando”.

Muchos hemos escuchado estos refranes y algunos de nosotros incluso los usamos diariamente. Si bien se pueden usar de pasada, sus verdaderas intenciones son muy importantes para un centro de servicio. Al reflexionar sobre estos refranes, podríamos incluso empezar a preguntarnos: “¿Cómo podemos incorporarlos en nuestra vida diaria en el centro de servicio?” Es muy simple. Completar el Programa de Certificación de EASA puede completar todos los requisitos para administrar su negocio en base a estos mantras de calidad.

MÁS INFORMACIÓN SOBRE LA ACREDITACIÓN

EASA AR100 & Good Practice GuideEntonces, ¿Cuál es el discurso contundente del Programa de Certificación de EASA para el cliente de un centro de servicio? De manera muy sencilla, asegura que el centro de servicio realice constantemente reparaciones electromecánicas que cumplan con la norma ANSI/EASA AR100-2020 y la Guía de Buenas Prácticas de EASA/AEMT para conservar la eficiencia del motor. El resultado es que los clientes recibirán una máquina eléctrica reparada, confiable y en la que se ha conservado su eficiencia. Algunas claves de venta del programa de certificación de EASA al cliente de un centro de servicio incluyen:

  • La certificación afirma el compromiso del centro de servicio con la excelencia.
  • La certificación demuestra que el centro de servicio está dedicado a reparaciones que mantienen la eficiencia y la confiabilidad.
  • La certificación ayuda a convalidar la calidad del trabajo de reparación de un centro de servicio, lo que a su vez puede otorgar un mayor nivel de credibilidad a la cadena de suministro de sus clientes.

Cuando un centro de servicio destaca y demuestra estas ventajas en reuniones con clientes, visitas a talleres o en campañas de concienciación de la industria, se está posicionando para dar una buena primera impresión.

Uno de los primeros pasos para hacer bien un trabajo es tener una meta establecida. Una de las metas principales del centro de servicio debe ser devolver a su propietario una máquina eléctrica reparada sin reducir su eficiencia o confiabilidad. Esta es toda la premisa del Programa de Certificación de EASA. Para lograr estos objetivos, necesitamos criterios de aceptación para saber que el trabajo ha sido realizado correctamente. Estos criterios de aceptación se conocen como la norma ANSI/EASA AR100-2020. La AR100 es la columna vertebral del Programa de Certificación de EASA. Esta norma es la práctica recomendada para la reparación de máquinas eléctricas rotativas, reconocida por el Instituto Nacional Estadounidense de Normas (ANSI).

Una vez que se han definido los criterios de aceptación, es muy común que exista una guía de algún tipo para ayudar a cumplir con los criterios especificados. En este caso, la guía complementaria se conoce como la guía de buenas prácticas de EASA/AEMT para conservar la eficiencia del motor. Un tercero ha validado que seguir estas mejores prácticas y la norma ANSI/EASA AR100 garantizará que la reparación no reducirá la eficiencia de un motor que se envía a reparar. Esto ha sido validado hasta e incluyendo motores clasificados como de Eficiencia Premium-NEMA e IE3-IEC. Cuando todos los empleados del taller utilizan los mismos documentos para definir la aceptación y cómo lograr esos niveles de aceptación, el centro de servicio tiene muchas más posibilidades de hacer bien el trabajo. Al pasar por el Programa de certificación de EASA, un centro de servicio puede tener un riesgo mucho menor de afrontar esas incómodas conversaciones con sus clientes para “explicar por qué no lo hicimos”.

Ahora que un centro de servicio tiene más posibilidades de no tener esas conversaciones difíciles, ¿Cómo minimiza aún más el riesgo el centro de servicio? Hay varios requisitos incorporados en el Programa de Certificación de EASA que ayudarán a un centro de servicio a lograr el mantra de “Calidad significa hacerlo bien cuando nadie está mirando”. Primero, el programa requiere que un centro de servicio capacite a sus empleados y tenga documentación que demuestre que se ha completado la capacitación. Cuando un centro de servicio invierte en sus empleados capacitándolos, están mejor equipados para hacer su trabajo correctamente la primera vez. En segundo lugar, este programa requiere que se realicen auditorías internas anualmente. Cuando los centros de servicio realizan auditorías, se asegura de que están siguiendo los procesos descritos por EASA o las mejores prácticas para lograr los objetivos de certificación de EASA. Cuando un centro de servicio hace que un tercero realice una auditoría obligatoria cada tres años para mantener la certificación, valida con una fuente imparcial que está realizando estos procesos según lo prescrito. Esta validación les da a los clientes de un centro de servicio la confianza de que el centro de servicio está logrando sus objetivos para sus prácticas de reparación.

Si un centro de servicio desea aumentar aún más sus posibilidades de éxito por “hacerlo bien cuando nadie está mirando”, el centro de servicio mostrará los resultados de las auditorías internas / externas, discutirá estos resultados con regularidad con los empleados y fomentará un entorno de mejora continua para abordar los problemas de los procesos cuando surgen. Si un centro de servicio acepta de qué se trata realmente el Programa de Certificación de EASA, no solo estará bien encaminado para lograr los tres mantras citados al principio de este artículo, sino que también podrá lograr mucho más. Los clientes del centro de servicio tendrán confianza en sus reparaciones, la administración del centro de servicio tendrá confianza en la capacidad de su equipo para lograr sus objetivos y el centro de servicio estará bien encaminado hacia la sostenibilidad a largo plazo.

Available Downloads

El Uso de Sensores para Optimizar el Mantenimiento y la Vida Útil

El Uso de Sensores para Optimizar el Mantenimiento y la Vida Útil

Bjorn Mjaveit
Miembro del Comité de Enseñanza Técnica de EASA
EMR Consulting AS
Bergen, Noruega

La Industria 4.0 y ahora la Industria 5.0 nos brinda una vez más nuevas tendencias e interpretaciones de cómo se desarrollará el mundo. Algunos llaman a la Industria 5.0 la venganza de los humanos cuando se les toma en cuenta.

En los últimos años, todos hemos escuchado mucho sobre digitalización, sensores, inteligencia artificial, sostenibilidad y aprendizaje automático. Pero, ¿qué significa para nosotros? En este artículo, me centraré en los sensores y cómo se vinculan con la industria electromecánica.

Available Downloads

Electrical Engineering Pocket Handbook

Electrical Engineering Pocket Handbook

Electrical Engineering Pocket HandbookDESCRIPTION
Filled with practical information, this 118-page handbook (3.5" x 6", 9cm x 15cm) makes a great “give-away” item for your customers and potential customers! Buy this great resource as is OR custom brand your company logo and information on the cover to turn it into a great marketing piece for your salespeople!

BUY COPIES OF THIS HANDBOOK

TABLE OF CONTENTS

MOTOR DATA–ELECTRICAL
Standard Terminal Markings and Connections
DC Motors and Generators (NEMA & IEC Nomenclature)
Field Polarities of DC Machines
General Speed-Torque Characteristics
Full-Load Efficiencies of Energy Efficient Motors
Full-Load Efficiencies of NEMA Premium™ Efficient Motors
Effect of Voltage Variation on Motor Characteristics
Power Supply and Motor Voltages
Effect of Voltage Unbalance on Motor Performance
Starting Characteristics of Squirrel Cage Induction Motors
Allowable Starts and Starting Intervals

MOTOR DATA–MECHANICAL
Suffixes to NEMA Frames
NEMA Frame Assignments–Three-Phase Motors
NEMA Frame Dimensions–AC Machines
IEC Mounting Dimensions–Foot-Mounted AC and DC Machines
IEC Shaft Extension, Key And Keyseat Dimensions–Continuous Duty AC Motors (Inches)
NEMA Shaft Extension And Keyseat
Dimensions–Foot-Mounted DC Machines (Inches)
NEMA Frame Dimensions–Foot-Mounted DC Machines (Inches)
NEMA Frame Dimensions–AC Machines (mm)
IEC Mounting Dimensions–Foot-Mounted AC and DC Machines (mm)
IEC Shaft Extension, Key and Keyseat Dimensions–Continuous Duty AC Motors (mm)
NEMA Shaft Extension and Keyseat Dimensions–Foot-Mounted DC Machines (mm)
NEMA Frame Dimensions–Foot-Mounted DC Machines (mm)

MOTOR CONTROLS
Power Factor Improvement of Induction Motor Loads
Capacitor kVAR Rating for Power-Factor Improvement
Full-Load Currents–Motors
Maximum Locked-Rotor Currents–Three-Phase Motors
NEMA Code Letters for AC Motors
Starter Enclosures
NEMA Size Starters for Three-Phase Motors
NEMA Size Starters for Single-Phase Motors
Derating Factors for Conductors in a Conduit
Allowable Ampacities of Insulated Conductors
Motor Protection Devices–Maximum Rating or Setting

TRANSFORMERS
Full-Load Currents for Three-Phase Transformers
Full-Load Currents for Single-Phase Transformers
Transformer Connections

MISCELLANEOUS
Temperature Classification of Insulation Systems
Resistance Temperature Detectors.
Thermocouple Junction Types
Dimensions, Weight and Resistance: Solid Round Copper Wire (AWG and Metric)
Square Bare Copper Wire (AWG)
Insulation Resistance and Polarization Index Tests
Properties of Metals and Alloys

USEFUL FORMULAS AND CONVERSIONS
Temperature Correction of Winding Resistance
Temperature Correction of Insulation Resistance.
Formulas for Electric Motors and Electrical Circuits.
Motor Application Formulas
Centrifugal Application Formulas
Temperature Conversion Chart
Conversion Factors
Fractions of an Inch–Decimal and Metric Equivalents

Available Downloads

Electromechanical Repair

Electromechanical Repair

7
presentations
$35
for EASA members

 

A special discounted collection of 7 webinar recordings focusing on various aspects of electromechanical repair.

Once purchased, all 7 recordings will be available on your "Downloadable products purchased" page in your online account.

Downloadable recordings in this bundle include:

Time-Saving Repair Tips
Presented August 2014

This webinar shares:

  • The secrets used by other service centers to gain a competitive edge in the repair process.
  • Mechanical, winding and machining tips reduce repair time, help avoid unnecessary rework, and decrease turn-around time.

Target audience: Supervisors, machinists, mechanics, winders, and sales personnel who interact with the end user.


Repair Best Practices to Maintain Motor Efficiency
Presented June 2012

There are certain repair processes, such as winding removal and replacement, that can impact the efficiency and reliability of electric motors. Prudent repair practices must not increase overall losses, and preferably should maintain or reduce them.

This presentation explains how those repair processes affect efficiency and reliability, and gives the best repair practices in order to maintain or improve efficiency.

Target audience: This presentation is most useful for service center inside and outside sales representatives, customer service personnel, engineers, supervisors and managers. The content will be beneficial for beginners through highly experienced persons.


Practical Problem Solving for the Entire Service Center
Presented August 2013

This presentation focuses on a report format developed by Toyota for a simple, yet methodical approach to document improvement. Whether you're dealing with problems related to sales, purchasing, repair or testing, if all team members can learn to speak the same, simple problem-solving language, they can tackle problems efficiently and effectively.

Target audience: This presentation is best suited for executives, managers, team leaders and front line supervisors from the office and service center who want to understand and implement such a program.


Induction Motor Speed Control Basics
Presented March 2019

Induction motors are most often applied to what are essentially constant speed drive applications. However, the use of induction motors in variable speed applications continues to grow, primarily due to technology advances in power electronics. This webinar will review speed control basics for induction machines.

  • Wound-rotor motor speed control
  • Squirrel-cage speed control by pole changing
  • Squirrel-cage motor speed control by variable voltage, fixed frequency
  • Squirrel-cage speed control by variable voltage, variable frequency

AC Motor Assembly and Testing
Presented August 2018

This webinar recording focuses on:

  • Motor assembly issues
  • Electrical and mechanical inspection
  • Static and run testing
  • AC motors with ball, roller and sleeve bearings

Target audience: This webinar recording is most useful for service center mechanics, supervisors and engineers. The content will also be beneficial for machinists, managers and owners.


On-Site Testing & Inspection of Electric Motors
Presented July 2015

This webinar covers electrical testing and inspection of installed electric motors, including:

  • Condition assessment for continued service
  • Diagnostic fault testing and interpretation
  • Physical inspection key points

 


Selecting Replacement DC and 3-Phase Squirrel Cage Motors
Presented September 2019

On many occasions, a different motor type is desired or needed. In these cases it is essential that the replacement motor provides the required performance, and do so reliably.

This presentation focuses primarily on the electrical aspects of selecting replacement motors. It also addresses speed and torque considerations.

  • DC motor to DC motor
  • DC motor to 3-phase squirrel cage motor
  • AC motor to 3-phase squirrel cage motor

Target audience: Anyone involved with selecting replacement motors or diagnosing issues with replacement motor installations.

E-mail: An overlooked opportunity to sell

E-mail: An overlooked opportunity to sell

George Flolo, Chair
Marketing & Industry Awareness  Committee
The Flolo Corp.
Bensenville (Chicago), Illinois

One important selling principle is to keep your company’s name and your name in front of the customer as often as possible.

The personal sales call is the best selling tool for this purpose. However, it can be time-consuming and expensive, and can lose its effect in a short time without another method of follow up. 

Another method to get one’s name out is through the use of flyers/mail­ers with special offers or announce­ments of new products or services. Properly positioned, this method does benefit you even without a purchase because your corporate identity is at least seen. Even though this method is a fraction of the cost of a sales call, it still has a significant cost compared to what I call “Enhanced E-mail.”

Available Downloads

Emerging Motor Technologies

Emerging Motor Technologies

Presented by Tom Bishop, P.E.
EASA Senior Technical Support Specialist

Following the squirrel cage induction motor, what will come next? This webinar provides an overview of potential successor technologies.

  • Permanent magnet (PM) motors
    • Hybrid permanent magnet (HPM) motors
    • Across the line start PM (LSPM) motors
    • High torque low speed PM motors
    • Surface permanent magnet (SPM) motors
    • Interior permanent magnet (IPM) motors
  • Reluctance motors
    • Synchronous reluctance motors (SynRM)
    • Switched reluctance motors (SRM)
  • Other motor technologies nearing reality
    • Amorphous metal designs
    • Axial flux ferrite PM motors

This webinar benefits anyone dealing with sales, service or repair of these and other emerging technology motors.

Available Downloads

Encourage (Proper) Use of Mobile Devices in the Service Center

Encourage (Proper) Use of Mobile Devices in the Service Center

Mike Howell
EASA Technical Support Specialist

There are plenty of generic mobile device policies floating around the web. Sadly, many of them focus heavily and narrowly on the disadvantages of team members having personal devices at their workstations. Depending on the particular environment and tools used, it is both reasonable and responsible to evaluate the potential risks to safety and security. Too often, though, organizations take the path of excluding mobile devices from the work area because it’s easy rather than reaping the benefits they offer.

Available Downloads

End Users Offer Perspective on Internet-Enabled Condition Monitoring

End Users Offer Perspective on Internet-Enabled Condition Monitoring

Paul Rossiter
Ad Hoc Committee on Emerging Technologies Member
Energy Management Corp.
Salt Lake City, Utah

In my Currents article last January, I discussed the newly formed Ad Hoc Committee on Emerging Technologies, chaired by Art Anderson, and mentioned that I thought there would be continued movement in the Industrial Internet of Things (IIoT) space. Specifically, I said I believed the discussion would increase around the IIoT topic, more companies would be coming into our space using this technology and that customers would begin to increase their adoption.

Available Downloads

Enhance Your Market Position Using EASA's Recommended Practices

Enhance Your Market Position Using EASA's Recommended Practices

Do customers and prospects view your company as just another EASA repair facility? Not sure? The most successful EASA members have learned to position their businesses in a way that is not like all others.

How do they achieve this uniqueness? It’s not through fancy marketing, websites or slick-talking salespeople. Rather, it is a business strategy that provides superior service by demonstrating adherence to EASA’s recommended practices. Note: This is not a technical session. It is a strategic marketing session that illustrates how your company can enhance customer value.

Some of the EASA standards addressed include:

  • ANSI/EASA AR100-2010: Recommended Practice for the Repair of Rotating Electrical Apparatus
  • Root Cause Failure Analysis
  • The Effect of Repair/Rewinding on Motor Efficiency: EASA/AEMT Rewind Study and Good Practice Guide to Maintain Efficiency

Envío de Motores Eléctricos 101

Envío de Motores Eléctricos 101

Chuck Yung
Especialista Sénior de Soporte Técnico de EASA

Es simple asumir que el envío de un motor eléctrico es tan fácil como ponerlo encima de un camión, pero nada podría estar más alejado de la realidad. Este artículo cubrirá las recomendaciones para efectuar el envío de motores y refuerza el hecho de que enviar un motor no solo consiste en entregarlo, sino que también incluye recogerlo. Existen cosas que nosotros (o una compañía de transporte) podemos hacer mal y que podrían derivar en reparaciones costosas.

Available Downloads

Errors Are Human Nature; Negative Events Result from System and Process Breakdowns

Errors Are Human Nature; Negative Events Result from System and Process Breakdowns

Paul Idziak
Management Services Committee Member
Shermco Industries, Inc.

Are we doing everything we can to support our employees, or are we looking to assign blame when things don’t go right?

We have all heard the buzzphrases like “finding your why” and “human performance.” While not new, consider looking at this area from a different perspective.

Available Downloads

Escogiendo el sistema de aislamiento adecuado para rebobinados de media tensión

Escogiendo el sistema de aislamiento adecuado para rebobinados de media tensión

Mike Howell, PE
Especialista de Soporte Técnico de EASA 

El sistema de aislamiento escogido para cualquier rebobinado debe ser el adecuado para la aplicación, el voltaje y la capacidad del proceso de rebobinado del centro de servicio. En la mayoría de los casos, seleccionar una opción "igual o mejor" es una buena práctica.

Available Downloads

European Commission announces motor and power converter efficiency directive regulation

European Commission announces motor and power converter efficiency directive regulation

Rob Boteler
Confluence Energy LLC

On October 22, the European Commission submitted its plan to expand motor and power converter efficiency regulations. As part of the EcoDesign directive, the Commission has been working on expanded motor and drive regulations for several years. The European Union directive will address both motors and variable frequency drives (VFDs) from .75 to 1,000 kW (1 to 1340 hp).

Efficiency directives in Europe are drafted by the Commission with individual countries responsible for enforcement. Unlike the USA where the regulation is promulgated and enforced at the federal level through the Department of Energy, each country within the EU has enforcement responsibility. Though some complain that the DOE rule making process is very lengthy and stressful, it does provide all interested parties with an opportunity to be heard. The EU Commission also has a process for the development of regulations, and many would argue that the manufacturers are somewhat less of an integral part of the EU process.  

The directive that will cover the new EU motor and power converter regulations is referred to as the “annex EN.” It has yet to receive its reference number. EC640/209, the current directive, will be replaced. 

Covered motor products
Beginning January 15, 2021, the energy efficiency of three-phase motors with a rated output equal to or above 0.75 kW (1 hp), and equal to or below 1,000 kW (1340 hp), with 2, 4 or 6 poles, which are not brake motors, increased safety motors, or other explosion-protected motors, shall correspond to at least the IE3 efficiency level. This should align with NEMA Premium 50 Hz.

Beginning July 1, 2022, the energy efficiency of three-phase motors with a rated output equal to or above 0.12 kW (0.16 hp) and below 0.75 kW (1 hp), single-phase motors with a rated output equal to or above 0.12 kW (0.16 hp), and increased safety motors with a rated output equal to or above 0.12 kW (0.16 hp) and equal to or below 1,000 kW (1,340 kW) shall correspond to at least the IE2 efficiency level.

Also, the energy efficiency of three-phase motors with a rated output equal to or above 0.75 kW (1 hp) and equal to or below 1,000 kW (1,340 hp) with 2, 4, 6 or 8 poles, that are not increased safety motors, shall correspond to at least the IE3 efficiency level. 

The directive includes AC motors that NEMA would describe as special or definite purpose, making this new regulation quite broad in the range of covered products. The EU directive does include motors that cannot be tested with the addition of a temporary endshield. 

The directive will not include air over (AO), totally encloseTENV, high ambient (60° C), high altitude (4,000 meters [13,000 feet]), low ambient (-40° C) and maximum operating temperature (400° C). Additionally, the directive exempts integral brake motors and integral motors and controls (IMACs). 

The directive does not include technologies other than AC. However, it is not clear if there is any distinction within the single-phase designs (cap start cap run, cap star induction run, etc.).

Covered variable speed drives 
The regulation covers variable speed drives with three phases input that are rated for operating with one motor within the 0.75 kW – 1,000 kW (1 to 1340 hp) motor rated output range, have a rated voltage above 100 V and up to and including 1,000 V AC, and have only one AC voltage output.

Variable speed drive (VSD) means an electronic power converter that continuously adapts the electrical power supplied to the motor to control the motor’s mechanical power output according to the torque-speed characteristic of the load driven by the motor, by adjusting the power supply to a variable frequency and voltage supplied to the motor. 

Product information requirements for motors 
According to the regulation, the product information requirements below shall be visibly displayed on the technical data sheet or user manual supplied with the motor; the technical documentation for the purposes of conformity assessment pursuant to Article 5; on websites of the manufacturer of the motor, its authorized representative, or the importer; and the technical data sheet or user manual supplied with products in which the motor is incorporated.

The exact wording used in the following list does not need to be repeated. The information may be displayed using clearly understandable graphs, figures or symbols rather than text: 

  • Rated efficiency (ηN) at the full, 75% and 50% rated load and voltage (UN), determined based on the 50 Hz operation and 25° C ambient reference temperature
  • Efficiency level: “IE2,” “IE3,” “IE4” or “IE5,” as determined as specified in the first section of this annex, followed by the term “-motor” 
  • Manufacturer’s name or trade mark, commercial registration number and address
  • Product’s model identifier
  • Number of poles of the motor
  • The rated power output(s) PN or range of rated power output (kW)
  • The rated input frequency(s) of the motor (Hz)
  • The rated voltage(s) or range of rated voltage (V)
  • The rated speed(s) or range of rated speed (rpm) 
  • Whether single-phase or three-phase
  • Information on the range of operating conditions for which the motor is designed: 
    • altitudes above sea-level
    • minimum and maximum ambient air temperatures including for motors with air cooling
    • water coolant temperature at the inlet to the product, where applicable 
    • maximum operating temperature
    • potentially explosive atmospheres
  • Information relevant for disassembly recycling or disposal at end-of-life; 
  • If the motor is considered exempt from efficiency requirements in accordance with Article 4(2) of this Regulation: the specific reason why it is considered exempt. 

For motors exempt from the efficiency requirements in accordance with Article 4(2)(m) of this regulation, the motor or its packaging and the documentation must clearly indicate, “Motor to be used exclusively as spare part for” and the product(s) for which it is intended.

Efficiency requirements for variable speed drives 
Efficiency requirements for variable speed drives shall apply as follows: the power losses of variable speed drives rated for operating with motors with a rated output equal to or above 0.75 kW (1 hp) and equal to or below 1,000 kW (1,340 hp) shall not exceed the maximum power losses corresponding to the IE2 efficiency level.

Conclusions
This is the first regulation for VSD efficiency. Overall, the directive maintains references to IEC standards for both motors and VSDs that have been developed in collaboration with industry, regulators and energy advocates. Test methods will use IEC 60034, which delivers results similar to IEEE 112 or CSA 390.

The regulation in its entirety may be found at https://bit.ly/2PG0VaD.

The efficiency levels also reference IEC levels IE2 and IE3. Note that the directive includes a reference to IE4 and IE5 levels, which are not scheduled for implementation. Unlike NEMA, IEC has one efficiency table regardless of enclosure type calculated at 1.0 SF. 

One issue that will face motor manufacturers is the smaller size of IEC motors to power ratio. In some cases, this will force motors to jump one frame size. End-users and OEMs buying these higher efficiency motors will need to be cognizant of possible changes to the motor’s size that may cause form, fit and function issues in a specific application.

Available Downloads

Evaluating Noise in Electric Motors

Evaluating Noise in Electric Motors

Nidec Motor Corp.Tom Bishop, P.E.
EASA Senior Technical Support Specialist

Determining the source of noise in a motor is often much more challenging than correcting it. However, a methodical approach to investigating the noise can narrow down the possible causes and therefore make it easier to resolve the noise issue. In this session we will address the causes and characteristics of the primary sources of noise in AC motors. Specific topics to be addressed:  

  • Magnetic noise (aka “electromagnetic noise” or “electrical noise”) 
  • Mechanical noise 
  • Windage noise 
  • Guidance for reducing or eliminating the intensity of these noise sources

This webinar recording is intended for mechanics, supervisors and testing technicians.

Available Downloads

Evitando Errores en Devanados Trifásicos con Grupos Desiguales

Evitando Errores en Devanados Trifásicos con Grupos Desiguales

Tom Bishop, P.E.
Especialista Sénior de Soporte Técnico de EASA

Cuando el número de bobinas por grupo es el mismo a lo largo de un devanado trifásico excéntrico (imbricado), la secuencia de agrupación es simplemente ese número de bobinas repetido tres veces multiplicado por el número de polos (ya que es trifásico). Por ejemplo, un devanado de 4 polos y 48 ranuras tiene 12 grupos de 4 bobinas.

La fórmula utilizada para determinar el número promedio de bobinas por grupo es: Bobinas por grupo = Ranuras divididas por grupos. Ya que no recomendamos el uso de bobinas a ranura llena en bobinados imbricados, el número de bobinas es igual al número de ranuras. El número de grupos en un devanado de polos alternos es igual al número de fases multiplicado por el número de polos. En muchos casos, existen devanados que tienen bobinas por grupo desiguales, como un bobinado de 8 polos de 36 ranuras, que tiene 24 grupos con un promedio de 1,5 (36/24) bobinas por grupo.

Available Downloads

Evolution of Sales: Web Search Secrets to Find the Right Leads, At the Right Time, With the Right Message

Evolution of Sales: Web Search Secrets to Find the Right Leads, At the Right Time, With the Right Message

Business Development for Any Economic Environment

Sam Richter
SBR Worldwide, LLC

During times of uncertainty, you have three choices as it relates to sales:

  1. Curl up, feel sorry for yourself and hope things get better soon
  2. Identify prospects and start building relationships so when we return to some sense of normalcy, your business development efforts are ready to hit the ground running
  3. Identify opportunities that need your solutions right now, and reach out in a highly relevant and highly differentiated way. 

Option 1 is not really an option. For Options 2 and 3: What worked in the past won’t necessarily work today and might never work again. The answer: Leverage sales intelligence to locate the right prospects at the right time with the right message. 
In this dynamic program, discover: 

  • How to generate opportunities using sales trigger events and powerful introductions so that you’re calling on the prospects who most likely need your solution, right now. 
  • How to use search engines, social media and the Invisible Web as powerful sales and competitive “intelligence agents,” ensuring you know how to align your value proposition to what prospects care about. 
  • How to leverage information to make a great impression, ensure relevancy, gain permission to ask challenging questions and provide ongoing value to both prospects and customers. 

The Evolution of Sales is not a new sales process – so you’re not starting over. Rather, it’s an evolution of how to identify opportunities and approach prospects in ways where your message is welcomed and appreciated – even in tumultuous times. Plus, what you learn and implement today will work even better when our world returns to some sense of normalcy.

Available Downloads

Expand Your Business with Ultrasonic Lubrication

Expand Your Business with Ultrasonic Lubrication

Steven Carbone
Technical Education Committee Member
Industrial Electro-Mechanics

As service organizations, we must continue to find ways to improve our customers’ reliability and reduce unplanned downtime. Studies have shown that 40-60% of electric motor failures are associated with bearings. This provides a great opportunity to support your customers with proactive maintenance that can have immediate and positive impacts on their operational state. Whether this technology is a recommendation after a service center motor inspection or being aware of their challenges associated with bearing reliability, your customers will be better off knowing about this technology and how your company can support them.

Available Downloads

Expanda su Negocio con la Lubricación por Ultrasonido

Expanda su Negocio con la Lubricación por Ultrasonido

Steven Carbone
Miembro del Comité Tècnico de Servicios
Industrial Electro-Mechanics

Como empresas de servicio, debemos seguir encontrando formas de mejorar la confiabilidad de nuestros clientes y reducir los tiempos de parada no planificados. Los estudios revelan que entre el 40% y el 60% de los fallos de los motores eléctricos están asociados con los rodamientos. Esto le brinda una gran oportunidad para respaldar a sus clientes con un mantenimiento proactivo que puede tener un impacto inmediato y positivo en su estado operativo. Ya sea que se recomiende después de una inspección de motores en un centro de servicio o que sus clientes sean conscientes de los desafíos asociados con la confiabilidad de los rodamientos, ellos estarán mejor si conocen de esta tecnología y saben cómo su empresa les puede ayudar.

Lubricación por Ultrasonido como Tecnología
La tecnología de ultrasonido es ampliamente utilizada en todas las instalaciones industriales, siendo la más común la de aire comprimido en la cual ayuda a identificar fugas y válvulas defectuosas. Esta práctica es adecuada para el rango de sonidos de alta frecuencia de más de 20 kHz, que excede la capacidad auditiva del ser humano. Debido a esto, el ultrasonido en sí es una de las primeras tecnologías que advierte de un fallo al observar el tiempo en la curva P-F (Figura 1).

Esta misma tecnología se puede utilizar para lubricar rodamientos y para ayudar a identificar los que requieren lubricación, envés de emplear las recomendaciones del fabricante del equipo basadas en el tiempo de operación, que pueden no ser apropiadas para las condiciones operativas en el mundo real de los motores eléctricos de sus clientes. La lubricación por ultrasonido ofrece datos cuantitativos que indican un cambio en la fricción entre las bolas y las pistas de rodadura y que se muestra en decibeles. Esta tecnología funciona excepcionalmente bien para la gestión proactiva de la vida útil de los rodamientos y antes que otras herramientas como el análisis de vibraciones puede identificar un problema. A menudo, es demasiado tarde para un rodamiento si el análisis de vibraciones ha detectado frecuencias de fallo y ahora sólo se está gestionando la degradación del mismo. Peor aún, una vez que el oído humano detecta un problema en un rodamiento, el momento del fallo es inminente. El resultado de la lubricación por ultrasonido son rodamientos engrasados adecuadamente para una vida útil más larga y la capacidad de planificar a largo plazo cuando el rodamiento comience a degradarse.

Existen varios fabricantes y niveles de herramientas de lubricación por ultrasonido. Algunos son simples y usan auriculares y una lectura en decibelios, pero otros le permitirán configurar alarmas, tomar notas de campo y recopilar datos espectrales. La recopilación de datos espectrales es similar al análisis de vibraciones con respecto a la identificación de frecuencias de fallo, pero nuevamente, le brinda la oportunidad de ser más proactivo con estos fallos una vez que se desarrollan. A menudo, las frecuencias de fallo de los rodamientos no aparecerán en los espectros de vibración típicos hasta que los defectos sean más prominentes. Al final, los rodamientos fallarán. Sin embargo, con esta tecnología, puede brindar toda la información a su cliente en un formato bien diseñado y basado en datos, para que pueda tomar las mejores decisiones para sus operaciones. (Figura 2).

Lubricación por Ultrasonido como Servicio
Nuestros clientes esperan que seamos expertos en el manejo de sus motores eléctricos. Vemos que el personal de mantenimiento de los usuarios finales se reduce, lo que requiere que los miembros de EASA intervengan y ayuden a cerrar las brechas. Con tantos motores fallando debido a problemas en los rodamientos, mantener la responsabilidad sobre la lubricación y el análisis de los rodamientos de sus motores es un gran valor agregado, que continuará fortaleciendo su relación con ellos como socio para el éxito. La lubricación por ultrasonido requiere esfuerzo para implementarse adecuadamente, pero ingresar al mercado desde el punto de vista del equipo y la gestión requiere menos que algunas de las otras tecnologías preventivas y predictivas de nuestra industria.

Sus clientes no solo se beneficiarán de la aplicación del tipo de grasa correcto en la cantidad y el intervalo correctos, sino que también obtendrán otro par de ojos sobre sus activos críticos. Este técnico adicional puede identificar e informar sobre problemas de confiabilidad y seguridad que puedan estar presentes con un equipo en particular. Hay muchos protectores de acoplamiento rotos o mangueras con fugas por ahí sobre los cuales su cliente podría beneficiarse al recibir un informe.

Personal Técnico
Tener a la persona adecuada dentro de su organización es fundamental para poder llevar esta tecnología a sus clientes con éxito. Esta persona debe comprender el mantenimiento centrado en la confiabilidad y tener una mentalidad proactiva y dispuesta a resolver problemas. Es posible que esta persona ya realice servicios de campo en su empresa y será una tecnología sencilla de agregar a su conjunto de herramientas. Si aún no tiene un candidato interno, considere contratar uno para que le ayude a desarrollar el lado de los servicios de confiabilidad de su negocio. Estos servicios en general seguirán siendo una industria importante cuya demanda solo aumentará a medida que los usuarios finales sigan elevando el listón de la excelencia operativa (Figura 3).

Equipo
Existen varios fabricantes de hardware específicamente adecuados para la lubricación por ultrasonido. Asegúrese de realizar la investigación adecuada para determinar qué funciona mejor para sus clientes, sus expectativas y su presupuesto. Un gran aspecto de esta tecnología es que puede ofrecer informes avanzados y la capacidad de confirmar, por activo, el tipo y la cantidad de lubricación utilizada. Puede que esto no sea necesario para todos los clientes, así que considere una solución más sencilla. También puede considerar elegir equipos que incluyan la funcionalidad de ultrasonido en el aire para hacer crecer aspectos adicionales de ultrasonido en su negocio.

Capacitación
Como ocurre con todas las tecnologías y servicios, la formación es fundamental para el éxito de su organización y sus clientes. Hay capacitación específica disponible para la lubricación por ultrasonido que se puede completar on-line o en persona. Asegúrese de elegir un proveedor que incluya información introductoria general sobre la tecnología de ultrasonido. También puede considerar uno que introduzca conceptos de confiabilidad si el técnico elegido puede necesitar ese soporte.

Conclusión
Como organizaciones de servicios de EASA, debemos continuar encontrando formas de asociarnos con nuestros clientes y resolver sus desafíos de confiabilidad. Con tantos fallos en los rodamientos, esta es una excelente manera de resolver lo que puede ser un gran dolor de cabeza para algunos. Sepárese de la competencia y ofrezca esta solución de alto valor.

Available Downloads

Expanding Your Marketing Efforts

Expanding Your Marketing Efforts

Crystal Bristow

Jenkins Electric Co.
Charlotte, North Carolina

Whether you have a dedicated marketing specialist or an employee willing to add the responsibility to their plate, check out a few easy steps to grow your marketing efforts.  

Walk It Out: Ask the person responsible for marketing to walk around the service center frequently. Have them ask the technicians what they are working on and what exciting projects they see. This is the first step in building a continuous stream of marketing content.  

Ask For Help: Ask technicians, engineers and mechanics to send you their photos from the field, in the shop and especially from jobs “they have never done before.” If the job is interesting for them, your audience will likely find it engaging. As a marketer, you can’t be everywhere, but as your technical team starts to share unique projects reflexively, you’ll be surprised by what comes your way.  

Befriend Your Delivery Driver: Your delivery drivers are among your most influential and knowledgeable marketing sources. Create a small literature packet, give them a stash of promotional items to hand out to key customers and share the types of customers and projects of interest. They know about every project coming your way, so use that to your advantage!  

Check Your Facts: When your technical team shares a photo and the technical details of a job, circle back with the content you create to ensure accuracy.

The more employees feel like they’re part of your organization’s marketing efforts, the more information and content they will supply. 

Explore Leadership, Vision + Culture in 2020

Explore Leadership, Vision + Culture in 2020

Jan Schmidlkofer
Management Services Committee Chair
K&N Electric Motors, Inc.

Last year, the Management Services Committee provided content regarding lean service throughout 2019, as that was of the utmost importance in many members’ minds. Hopefully, you were able to take some of our ideas and experiences and implement lean service in your service center! 

Moving forward for 2020, vision and culture in leadership were specifically mentioned as topics of interest in a recent survey. Over the next several months, Management Services Committee members will share their lessons and expertise in a focused article series on this robust topic.

Available Downloads

Fact or Myth: Common Misconceptions About Motors

Fact or Myth: Common Misconceptions About Motors

Tom Bishop, P.E.
EASA Senior Technical Support Specialist

An old saying claims: “If it’s in black and white, it must be right.” Seeing something in writing makes it more believable than the spoken word. However, that does not mean it is true. We should always look for substantiation to back up statements, whether written or verbal.

A more recent saying is: “If it’s on the Internet, it must be true.” Apply that same fact-check here. Look for substantiation before accepting information gleaned from the Internet.  

Here is a random collection of some relatively common misconceptions about three-phase squirrel cage motor performance characteristics.

Available Downloads

Factores a Considerar al Probar Armaduras de CC

Factores a Considerar al Probar Armaduras de CC

Chuck Yung
Especialista Sénior de Soporte Técnico de EASA

Cuando se prueban armaduras de CC, ya sea al entrar a reparación o una vez rebobinadas, una pregunta que escucho muy a menudo incluye la interpretación de los resultados de la prueba de impulso (barra-barra de alta frecuencia).

Available Downloads

Fall Protection: Preventing Avoidable Accidents

Fall Protection: Preventing Avoidable Accidents

Dale Hamil
Technical Education Committee Member
Illinois Electric Works

The U.S. Occupational Safety and Hazard Administration (OSHA) recently released revised data for the top 10 OSHA violations for the 2019 fiscal year. For the ninth consecutive year, Standard Number 1926.501: General Requirements for Fall Protection lands at number one with 7,014 violations.

 

Available Downloads

Fallos en los Rodamientos de Elementos Rodantes de un Motor

Fallos en los Rodamientos de Elementos Rodantes de un Motor

Austin Bonnett
Austin Bonnett Engineering LLC

La finalidad de este artículo es proporcionar fundamentos suficientes sobre los rodamientos para que los responsables por la aplicación, operación, mantenimiento y reparación de los motores eléctricos puedan tomar las medidas necesarias para minimizar los fallos prematuros y mejorar la posibilidad de que de los rodamientos duren hasta el “final de la vida útil”, que normalmente se denomina L10.

Available Downloads

Fitting Sleeve Bearings

Fitting Sleeve Bearings

Chuck Yung
EASA Senior Technical Support Specialist

When sleeve bearings are rebabbitted or replaced, an important step during assembly is to check the contact between the sleeve bearing and the journal which rides in it. The use of self-aligning sleeve bearings (also called spherical or ball fit) renders this step almost unnecessary. Still, cylindrical sleeve bearings should be inspected to make sure the contact area is sufficient.   

Sleeve bearings, also known as babbitt bearings, plain bearings or white metal bearings, have been in use for over 150 years. For a detailed explanation of sleeve bearing design and operation, request the EASA 2007 Convention paper, “Sleeve Bearing Repair Tips,” or see Mechanical Repair Fundamentals of Electric Motors, 2nd Edition.  

This article is specific to checking and correcting the wear pattern when installing a new sleeve bearing in an electric motor. Fitting a sleeve bearing is not difficult; it just requires some basic knowledge. An interesting bit of history: the toolkit provided with the old Model A Ford automobile included a babbitt knife for scraping crankshaft bearings. Imagine dismantling your engine alongside the road to remove and fit the babbitt bearings.

Available Downloads

Five Ways easa.com Can Help Your Business!

Five Ways easa.com Can Help Your Business!

By Justin Hatfield
Marketing & Industry Awareness Committee Member
HECO

How much time have you spent at easa.com? There are a lot of valuable resources that are avaliable to you as an EASA member that you can use today!

  1. Training – Not only can you use easa.com to book a training class that you or your employees can attend, but there is a ton of archived content located in the “Resources” tab that you can use to train your team today! You can easily conduct a search on a term and see content that is available on that topic. I did a search and simply put “winding” in the search box. This brought up 307 different pieces of information. These varied from articles, videos and webinar recordings. One piece of information was a seven minute video called “Performing an Insulation Resistance Test” – what a great training tool to use with new technicians in your shop! Remember, this information is all included with your membership, so it doesn’t cost you a dime more!
  2. Technical Support – One of the easiest ways to get technical support from an EASA engineer is to use easa.com. Right in the middle of the homepage is a button labeled “Technical Support.” If you click that button, you can easily get to a page with great technical resources, including an orange button to “Submit a Technical Inquiry.” Simply click on “Submit a Technical Inquiry,” explain why you are asking for help and an EASA engineer will be in touch as soon as possible! This is a great resource that you can use to upload pictures and other details that will help the EASA engineer understand the whole picture of what you are encountering.
  3. Marketing Content – Want to be more involved with marketing but don’t have the time to make content to post? It’s easa.com to the rescue! In the Electromechanical Resource Center at easa.com, you have a variety of useful information that you can use as part of your marketing efforts. This information ranges from studies EASA has performed, the EASA/ANSI AR100 Standard, alignment information and much more. This information is at your disposal to use to help promote your business. Just be sure to credit EASA on the post! :)
  4. Find Specialty Help – None of us can do everything and when those situations arise, consider going to easa.com to find a member that can help you with what you need. Maybe you need to use a larger burn off oven, a specialty servo motor or whatever the reason; you can visit easa.com’s “Find a Member” section and search for an active EASA member who can help you. Using the neat “Advanced Search” options, you can filter down to members that can help you with exactly what you need. I’ve used this a number of times for help over the years, and I’ve found that EASA members are great at helping each other out!
  5. Find a Vendor – In the same “Find a Member” section of easa.com, you can search for Associate Members. These are members of EASA who are our vendors. You can search for “seal” or “coil” or whatever you are looking for, and if the vendor has the word in their description, they will pop right up. A search on the term “bearing” brought up 19 different potential vendors to help a member with a need. Their contact information is right there on the same screen, so you can reach out to see if they can help you.

As you can see, there are a lot of ways in which easa.com can help your business. Did you know that you can give each of your employees access to the website? If you aren’t sure how to do this, give EASA Member Services a call at +1 314 993 2220 or email easainfo@easa.com, and they will be happy to help you out!

Also, keep in mind that none of the things I’ve mentioned in this article cost you a dime extra. They are included in your EASA membership!

Five-year performance analysis provides valuable insights

Five-year performance analysis provides valuable insights

The accompanying set of exhibits provides an overview of financial trends in distribution between 2004 and 2008. It places special emphasis on the changes between 2007 and 2008. The information related to EASA comes from data provided by participants in the Operating Performance Survey.

The analysis covers forty different lines of trade in distribution. In developing such a macro-view of distribution, it is not possible to compare most financial ratios directly. For example, some industries have a high gross margin and accompanying high expenses, while others have a low gross margin and low expenses.

What is possible is to compare the direction and magnitude of change. The emphasis is on how much performance changed during the time period covered. The changes are highly instructional in analyzing current issues in distribution and in planning for future periods of economic uncertainty. 

Available Downloads

Follow these procedures, guidelines when rebuilding collector rings

Follow these procedures, guidelines when rebuilding collector rings

Chuck Yung 
EASA Technical Support Specialist 

When repairing slip-ring machines, it is sometimes necessary to re-insulate the collector rings from the hub. In these cases, some proce­dural guidelines may be helpful. Specifics such as interference fit, type of insulating material, and type of ring material require careful attention.

Available Downloads

Fomente el Uso (Adecuado) de Dispositivos Móviles en el Centro de Servicio

Fomente el Uso (Adecuado) de Dispositivos Móviles en el Centro de Servicio

Por Mike Howell
Especialista de Soporte Técnico de EASA

Existen muchas políticas genéricas sobre el uso de los dispositivos móviles flotando en internet. Lamentablemente, muchas de ellas se centran en gran medida y de forma limitada en las desventajas de que los empleados tengan dispositivos personales en sus estaciones de trabajo. Dependiendo del entorno particular y de las herramientas utilizadas, es razonable y responsable evaluar los riesgos potenciales para la seguridad y la protección. Sin embargo, con mucha frecuencia, las organizaciones toman el camino de excluir los dispositivos móviles del área de trabajo porque es una medida fácil, en lugar de aprovechar los beneficios que ofrecen.

Free training! Or, at least how to get some funding for your training program

Free training! Or, at least how to get some funding for your training program

Chuck Yung
EASA Senior Technical Support Specialist

The training issue is so critical that many state and provincial governments in the U.S. and elsewhere offer financial help to good employers—such as the electrical apparatus service and sales industry—for training. These programs are usually administered through state employment offices and are not to be confused with programs for the “chronically unemployed.” 

Here’s An Example From A Fellow EASAN 
Ron Widup, general manager of Shermco Industries in Dallas, Texas, recently secured a substantial training grant from a state-administered program. Texas has a proactive training assistance program (called SmartJobs) which provides training grants of up to $3,000 per employee per year.

The program requires in-kind matching by the grant recipient. This does not mean that a $100,000 grant requires a business to invest $100,000. “In-kind matching” varies from 10 percent to 100 percent, depending on the size of the company. 

It Gets Better 
The company contribution includes total legitimate training costs, including the employees’ wages (for schooling and training time), cost of training materials (e.g., the EASA Vo-Tech training program), and administrative costs. Even capital expenses for training equipment or facilities are covered under some programs. 

The particulars vary from state to state, but there is often financial help available for those serious about improving the quality of their workforce. And the application process requires less effort than for a U.S. Small Business Administration (SBA) loan.

For more information, contact your state or province economic development department. 

Fundamentos de los Motores de Reluctancia Conmutada

Fundamentos de los Motores de Reluctancia Conmutada

Por Mike Howell
Especialista de Soporte Técnico de EASA

Los motores de reluctancia conmutada (SRM), también conocidos como motores de reluctancia variable (VRM), tienen su origen a mediados de 1830. Estos motores fueron usados como motores de tracción ferroviaria. Sin embargo, la electrónica de potencia necesaria para controlar satisfactoriamente los SRMs, no fue patentada hasta comienzos de los 70´s. Esto implicaba una conmutación electrónica sincronizada con la posición del rotor. Los centros de servicio están notando un incremento en el número de SRMs que reciben para reparar y algunos de los técnicos no están familiarizados con su funcionamiento. Como cualquier otra máquina rotativa, un conocimiento básico de los principios de funcionamiento puede ayudar a detectar problemas y durante la reparación. Uno de los puntos más críticos para el personal del centro de servicios es entender de antemano que estas máquinas no pueden ser operadas sin un drive especial, el cual normalmente necesita ser suministrado por el usuario final o el fabricante.

Available Downloads

Fundamentos de los Motores Sincrónicos

Fundamentos de los Motores Sincrónicos

Mike Howell
Especialista de Soporte Técnico de EASA

Los avances en la electrónica de potencia en las últimas décadas han permitido el uso de una variedad de máquinas eléctricas rotativas que de otro modo no sería factible. Una de ellas se denomina máquina de reluctancia debido a la forma en la que dichas máquinas producen un torque electromagnético. Una máquina de reluctancia es una máquina eléctrica en la cual el torque se produce por la tendencia de su parte móvil a moverse a una posición donde se maximiza la inductancia del devanado excitado. En un artículo publicado en Currents en marzo de 2020, se trató el tema del motor de reluctancia conmutada (SRM), mientras que este artículo se centrará en el motor sincrónico de reluctancia (SynRM). Demos un vistazo a algunas de sus similitudes y diferencias.

Fundamentos de Reparación Mecánica de Motores Eléctricos

Fundamentos de Reparación Mecánica de Motores Eléctricos

Fundamentos de Reparación MecánicaEn toda reparación mecánica, la capacidad para desmontar, reparar y volver a montar el motor de forma apropiada sin dañar innecesariamente ninguna de sus piezas es fundamental. Esto suena sencillo, sin embargo, durante el proceso de desarme se cometen demasiados errores costosos.

Si todos los motores entraran “como nuevos”, la tarea sería más simple, aunque esto no sería garantía de que el montaje del motor fuera adecuado.

Cuando un centro de servicio recibe un pago por reparar un equipo, quiere que este permanezca en funcionamiento, ya que, si el equipo falla dentro del período de garantía, deberá asumir el costo de volver a repararlo. Por lo que tiene sentido realizar la reparación correcta la primera vez.

Los procedimientos de reparación, así como los propios motores, son afectados por los cambios en la tecnología. Este libro intenta incluir las últimas tecnologías comprobadas. En muchos casos, los métodos de reparación tradicionales aún pueden ser la alternativa más práctica. Las opciones presentadas a lo largo de este libro están destinadas a ayudar a los técnicos a seleccionar el método de reparación correcto, reconociendo que la decisión final recae en el propietario del equipo.

Algunas veces los métodos de reparación pierden popularidad, no porque aparezcan métodos mejores sino debido a técnicas deficientes. Otros métodos de reparación son adecuados para algunas aplicaciones, pero no para otras. Es trabajo del reparador decidir cuál será el mejor método para cada caso.

Este libro se encuentra dividido en secciones para los componentes básicos del motor con métodos de reparación y consejos dispersos por todas partes. Donde resulte práctico, se discuten también las causas de fallo. Esto ayudará a los técnicos a seleccionar el método de reparación más apropiado para cada aplicación en particular. La información presentada se basa en publicaciones de EASA y en revistas técnicas y literatura suministrada por fabricantes de motores, proveedores y centros de servicio establecidos.

COMPRAR DESCARGAR COMPRAR VERSIÓN IMPRESA

Tabla de contenido

  • Terminología del motor
  • Aplicaciones del motor y encerramientos
  • Procedimientos de inspección y prueba
  • Consejos para desmontar motores
  • Rodamientos
  • Alojamientos de rodamientos, orificios de eje, sellos y ajustes
  • Ejes
  • Rotores
  • Ensamble del motor
  • Accesorios y cajas de conexiones del motor
  • Dinámica del motor
  • Vibración y geometría del motor
  • Corrientes por el eje/rodamientos
  • Consideraciones especiales para motores a prueba de explosión
  • Fallos en las componentes mecánicas
  • Reparaciones misceláneas

Esta obra contiene muchas sugerencias sobre el manejo apropiado de las diferentes partes de un motor para minimizar los daños durante el proceso de reparación. Sin embargo, es imposible desarrollar un listado que las incluya todas.

En cambio, el principio básico de tomarse el tiempo para usar la herramienta adecuada y por lo general el procedimiento apropiado guiará a los técnicos por el camino correcto.

Getting the Most from Winding RTDs

Getting the Most from Winding RTDs

Winding RTDs are resistance-based temperature monitoring devices. Aside from just reporting winding temperature, here are some tips for maximizing the benefit of RTDs. Place six RTDs, spacing them uniformly around the core so there are two per phase. Provide a location map, numbering the RTDs, starting with the number 1 RTD in the 12:00 position. Number the RTDs clockwise facing the connection end.

Knowing where each RTD is located (which phase, as well as the physical location in the stator) provides some powerful diagnostic ability. Possible causes for deviation in temperature are:

  • Two RTDs reading high, and both in the same phase: Check for voltage / current unbalance; higher current in one phase causes higher temperature in that phase.
  • If the number of circuits is half the number of poles, circulating currents can occur. This situation can be exacerbated by uneven airgap which cause a further temperature increase. The corrective action, in this case, is to use the appropriate extra-long jumpers when connecting the winding.
  • Higher temperature indicated in adjacent RTDs may indicate obstructed ventilation. Some possible causes are clogged filters, missing soundproofing, displaced weather-stripping, poorly positioned air baffles, or a missing J-box cover.
  • Some manufacturers place all six RTDs across the 10:00 to 2:00 portion of the winding, to report more uniform temperatures. By distributing the RTDs symmetrically around the stator -- instead of just on the top -- the reported apparent temperatures often look alarming. Before returning the motor, let the end-user know where they were originally, and explain that the symmetrical placement will yield more realistic results.

Getting to Know Reluctance Machines

Getting to Know Reluctance Machines

Mike Howell
EASA Technical Support Specialist

Reluctance machines offer simple construction, high power density and low cost. Over time, advancement in power electronics will increase the prevalence of these machines in a number of applications, creating repair opportunities for service centers. This recording explores features of synchronous and switched reluctance machines.

  • Basic magnetic circuits
  • Reluctance machines and torque production
  • Slots, poles and phases
  • Concentrated windings vs. lap or concentric windings
  • Rewind, test and inspection

This recording will benefit service center managers, supervisors and technicians.

Available Downloads

Good Practice Guide to Maintain Motor Efficiency

Good Practice Guide to Maintain Motor Efficiency

Based on the 2019 and 2003 Rewind Studies of premium efficiency, energy efficient, IE2 (formerly EF1) and IE3 motors

Good Practice Guide to Maintain Motor EfficiencyThe purpose of this guide is to provide repair/rewind practices and tips that will help service center technicians and motor winders maintain or increase the efficiency, reliability and quality of the motors they repair.

Some of the included procedures derive directly from the 2019 and 2003 rewind studies by EASA and AEMT of the impact of repair/rewinding on motor efficiency. Others are based on the findings of an earlier AEMT study [1998] of small/ medium size three-phase induction motors and well-established industry good practices . 

The procedures in this guide cover all three-phase, random-wound induction motors. Much of the guide also applies to form-wound stators of similar sizes. 

(Note: This guide provides many specific procedures and recommendations. Alternative practices may accomplish the same results but must be verified.)

Download a FREE PDF using the link below or buy printed copies in EASA's Online Store

 

Table of Contents Overview

  • Terminology
  • Energy losses in induction motors
  • Motor repair processes
    • Preliminary inspection
    • Dismantling the motor
    • Removing the old winding and cleaning the core
    • Rewinding the motor
    • Reassembling the motor
    • Confirming the integrity of the repair
WARNING: HAZARDOUS AREA MOTORS
Some elements of this Good Practice Guide To Maintain Motor Efficiency, particularly those concerning changes to windings, do not apply to hazardous area/explosion-proof motors (e.g., UL, CSA, IECEx). Do not use this guide for those types of motors.

Available Downloads

Guía de Buenas Prácticas Para Conservar la Eficiencia del Motor

Guía de Buenas Prácticas Para Conservar la Eficiencia del Motor

Basada en los Estudios de Rebobinado de motores de eficiencia premium, energético eficientes, IE2 (antigua EF1) e IE3 realizados en 2019 y en el 2003

Good Practice Guide to Maintain Motor Efficiency

El propósito de esta guía es suministrar prácticas y consejos de reparación/rebo­binado que ayudarán a los técnicos y a los bobinadores del centro de servicios a conservar o aumentar la eficiencia, confiabilidad y calidad de los motores que reparan.

Algunos de los procedimientos incluidos derivan directamente de los estudios sobre el impacto de la reparación/ rebobinado en la eficiencia del motor realizados por EASA y AEMT en los años 2003 y 2019. Otros se basan en los hallazgos del estudio previo efectuado por AEMT [1998] en motores trifásicos pequeños/medianos y en las buenas prácticas industriales bien establecidas.

Los procedimientos de esta guía cubren todos los motores trifásicos de inducción de alambre redondo. Mucha información también aplica a motores con bobinas preformadas (pletina o solera) de tamaños similares.

(Nota: Nota: Esta guía proporciona muchas recomendacio­nes y procedimientos específicos. Se pueden lograr los mismos resultados con otras prácticas, pero deberán ser verificadas.)

Descargue un PDF GRATIS utilizando el link.

 

Tabla de Contenido

  • Terminología
  • Pérdidas de energía en los motores de inducción
  • Procesos de reparación del motor
    • Inspección inicial
    • Desmontaje del motor
    • Remoción del antiguo bobinado y limpieza del núcleo
    • Rebobinado del motor
    • Montaje del motor
    • Confirmando la integridad de la reparación
ADVERTENCIA: MOTORES PARA TRABAJAR EN UBICACIONES PELIGROSAS
Algunos elementos de esta Guía de Buenas Prácticas para Conservar la Eficiencia del Motor, especialmente los relativos a los cambios en los bobinados, no aplican a motores que trabajan en zonas peligrosas/a prueba de explosión (ej., UL, CSA, IECEx). No use esta guía para este tipo de motores.

Available Downloads

Hazard Communication Manual

Hazard Communication Manual

This indispensable, FREE, 93-page manual was developed to help EASA service centers navigate the difficult terrain of the Federal OSHA Hazard Communication Standard. More specifically, it will help you collect and file Material Safety Data Sheets, train your employees, and document your training as required. Included are a summary of the OSHA Hazard Communication Standard, a compliance checklist, a suggested hazard communication program, hints on how to develop a written training program, and a primer on how to read Material Safety Data Sheets. The manual also contains a glossary and samples of various OSHA forms and letters.

Table of Contents

  • Introduction to Hazard Communication
    • Why was this standard put into effect?
    • How will this be done?
    • What should we be doing?
    • How can EASA service centers get this done?
    • Suppose we choose not to do anything?
    • Where can I get further information?
  • Section I: Summary Outline
    • Hazard communication
    • Hazard communication compliance checklist
  • Section II: Suggested Written Program
  • Section III: Hints on Developing Written Training
  • Section IV: How To Read & Understand MSDSs
  • Section V: MSDS Glossary
  • Section VI: Attachments
    • OSHA (Standard 1910.1200)
    • Checmical hazard communication
    • Voluntary training guidelines
    • Substance survey
    • Letters to manufacturers & suppliers
    • Letter re MSDSs to Seller
    • Followup letter re MSDSs to Seller
    • Chemical substance training record

Available Downloads

Healthcare Savings Accounts

Healthcare Savings Accounts

Tim Hayes
Contributing Writer
PA Manufacturer Magazine

The first thing most people associate with the Medicare Modernization Act is the prescription drug benefit for seniors, but another provision in that legislation is proving to be more popular and easier to understand and use – Healthcare Savings Accounts, or HSAs.

Under an HSA, interest-bearing tax-free accounts can be opened by anyone who purchases a low-premium, high-deductible insurance policy. The insurance policy itself covers unseen medical catastrophes. Meanwhile, the money put into the HSA account can be used for routine health expenses – from contact lenses to office visits – with un­used savings accruing from year to year.

HSAs put healthcare choices back into the hands of consumers. What’s more, they’re designed to lower the cost of insurance for many Ameri­cans who otherwise could not afford medical coverage. The basic idea is to give individuals a tax break while deregulating the market for health insurance.

Available Downloads

Help With Installing Winding Resistance Temperature Detectors (RTDs)

Help With Installing Winding Resistance Temperature Detectors (RTDs)

When installing winding Resistance Temperature Detectors (RTDs), divide the number of stator slots by the number of RTDs to install (usually six) and mark the slots accordingly. For example, a 72-slot stator with six RTDs would position an RTD in every 12th slot. That results in two RTDs per phase. Be sure to number the RTDs and provide a map of their locations to aid the customer in interpreting temperature differences. For example, unbalanced voltage might result in higher temperature in two RTDs in the same phase, while obstructed ventilation is likely to cause higher temperature in two or three adjacent RTDs.

One anomaly is WPI or WPII (weather protected) enclosures, where the top hood is integral to airflow. Some manufacturers place all six RTDs across the top of the windings (from the 10:00 - 2:00 positions) so that all RTDs are within the area receiving better cooling. This is not deceptive; it’s just meant to avoid a customer asking questions about temperature differences. For repairers, it’s a talking point with your customer when rewinding such a motor. Do they want the RTDs evenly spaced, recognizing that they will see the differences in actual operating temperature? Or do they want them placed as the manufacturer did? Better to have that conversation first, rather than raise doubts after the motor returns to service.

Note that, depending on the coils/ group and pitch, an RTD might be between top and bottom coils of the same phase, or of different phases.

High Potential Testing Motor Windings with Very Low Frequency

High Potential Testing Motor Windings with Very Low Frequency

Chase Fell
Technical Education Committee Chair
Jay Industrial Repair

High potential (hipot) testing procedures for motor and generator windings are usually performed with 50/60 Hz AC or DC as the power source. Hipot testing is a critical step in validating the quality of new windings. AC and DC hipot tests are also useful to understand the condition of aged insulation for machines in service. DC hipot testing is widely used in motor repair because the equipment is portable, and the steady state test current comes mostly from leakage through the insulation.

When a breakdown occurs, DC causes less damage to material adjacent to the fault when compared to AC tests. A disadvantage of DC testing is the voltage is not distributed in the same way as what the winding sees with AC. Specifically, the DC test stresses the end turns much higher.

AC hipot testing is much more consistent with the voltage stress of the machine in service. Studies have shown that the AC hipot test can reveal insulation defects that are left undetected with DC tests. An AC test can better detect voids and delamination inside the insulation system. The disadvantage of the AC test at power frequency is when the size of the test set and/or complexity of the setup becomes problematic in motor repair and in the field.

Available Downloads

How Engagement on Social Media Can Benefit Your Business and EASA

How Engagement on Social Media Can Benefit Your Business and EASA

Kyle Fritz
Marketing & Industry Awareness Committee Member
Northwest Electric, LLC

The EASA community has long been one of its greatest strengths regardless of your membership category. The networking, sharing of ideas and connections made during the chapter, regional or international meetings can be extended through social media engagement. The beauty of social media is that you’re speaking to a worldwide audience and your online activity can benefit both your business and EASA.

EASA currently has a presence on LinkedIn, Facebook, Twitter and YouTube. If you aren’t following or subscribing (YouTube) to these channels, you really should. Social media is a fast and easy way to stay up to date on EASA news and events. When you follow EASA on various social channels, you will receive post notifications. Start thinking of the notifications as a business opportunity because you can comment on the posts, “Like” the posts and/or share the posts on your social media channels.

Available Downloads

How Has the Economic Downturn Altered Liquidity Options for Business Owners?

How Has the Economic Downturn Altered Liquidity Options for Business Owners?

Craig MacKay & Glenn Tofil
England & Company, LLC

Prior to the downturn, many business owners were looking to raise capital for internal growth initiatives, acquisitions, or to buy out a family member or partner, while others were considering an outright sale to an outside acquirer, management or employees. While the current economic slowdown may have delayed those plans, this presentation is designed to help business owners understand: 

  1. Current private capital markets conditions
  2. Alternative transaction structures available to middle market business owners
  3. How financial and strategic investors and acquirers have changed their outlooks given the economic dislocation caused by social distancing measures

Despite the economic downturn, there is an abundance of private capital and continuing long-term interest from financial and strategic acquirers in quality businesses. As part of this session, England & Co. will ask a panel of non-control and control investors and acquirers along with a well-known ESOP attorney to explain key aspects of their particular transaction focus and provide their views on how the current downturn is likely to impact overall levels of transaction activity.

Available Downloads

How to Measure Magnet Wire

How to Measure Magnet Wire

This video shows one step in collecting motor winding data: how to measure magnet wire. A service center could use this data to:

  • Duplicate an original winding
  • Verify that a previous rewind was done correctly
  • Serve as a basis for redesigning a winding
  • Store recorded data for future reference

 

Helpful tools

How to Set Brush Neutral on a DC Machine

How to Set Brush Neutral on a DC Machine

This video shows how to adjust the brush neutral position of a DC machine to prevent sparking at the brushes at full load. An accurate neutral setting promotes good commutation and efficient machine operation. It also minimizes commutator wear while maximizing brush life. For this video, we’re using the AC method of setting brush neutral.

How to Test and Assess Stator Core Condition Using a Loop Test

How to Test and Assess Stator Core Condition Using a Loop Test

Toshiba - webinar sponsor badgePresented by Carlos Ramirez
EASA Technical Support Specialist

Is the motor drawing high no-load amps and winding data are correct? Are you experiencing unusual heating of the stator under load? Those common questions can be answered by checking the stator core condition. This presentation will discuss how to perform a stator core test using a loop test. It also will explain how to analyze the results, providing information about the associated equipment, tips for repairing core damage and explain other alternatives for stator core testing.

The presentation covers:

  • Loop test theory
  • Testing procedure
  • Acceptable limits for losses and core temperatures
  • Associated equipment
  • Tips for repairing core damage
  • Alternative stator core test

This presentation will be useful for supervisors, winders and test technicians.

Available Downloads

How to Use EASA Materials in a Trade Show

How to Use EASA Materials in a Trade Show

Justin Hatfield
Marketing and Industry Awareness Committee Member
HECO - All Systems Go!

EASA provides a lot of valuable resources for members to utilize, including engineering support, sales and management training. One of the things we don’t talk enough about is how we, as members, can utilize these resources with our clients and prospective clients.

One of the ways in which you can utilize some of these resources is at a trade show. Many EASA members go to some form of a trade show. Some members who work for larger companies may go to a 10,000+ attendee national trade show and others may go to a small (<100 people) local trade show. Some are general manufacturing trade shows, and others may be industry specific such as a local water/wastewater conference. Some may even be local job fairs, which are great recruiting events if you need to add someone to your team.

So where does EASA come in? EASA offers a variety of items and tools that make it easy for members to prepare for and participate in trade shows. Here are some of those tools from easa.com that can be purchased or downloaded.

Available Downloads

How Up-Thrust Occurs in Vertical Turbine Pumps and Provisions to Control It

How Up-Thrust Occurs in Vertical Turbine Pumps and Provisions to Control It

Up-thrust can occur during shutdown or when the pump is operating at flow rates greater than the allowable operating range.

Gene Vogel
EASA Pump & Vibration Specialist

Vertical turbine pumps depend on the vertical motor's thrust bearings to support the combined weight of the pump rotor and the motor rotor and to counteract the dynamic down-thrust that the pump impellers generate in lifting the liquid.

READ THE FULL ARTICLE

IECEx - Explosive Atmospheres

IECEx - Explosive Atmospheres

The IECEx is a global certification scheme based on standards of the International Electrotechnical Commission. It caters for differing countries whose national standards are either identical to those of the IEC or else very close to IEC standards.

The IECEx is truly global in concept and practice, reduces trade barriers caused by different conformity assessment criteria in various countries, and helps industry to open up new markets. The goal is to help manufacturers reduce costs and time while developing and maintaining uniform product evaluation to protect users against products that are not in line with the required level of safety.

As many countries have their own national standards and certification schemes, the movement of Ex equipment between countries is often impeded by the need to re-certify or re-test regardless of previous assessments, which adds to the final cost.Time is wasted by mostly formal, not technical approval procedures, which delays final market access. The aim of the IECEx is to ease international trade of Ex equipment by eliminating the need for duplication of testing and certification. It is a voluntary scheme that provides an internationally accepted means of proving that products have been:

  • Independently tested; and
  • Produced under strict quality controls audited and under surveillance by an independent IECEx Certification Body.

All this to ensure product compliance with IEC standards.

Available Downloads

Importance of Training to Remain Competitive in Today’s Market

Importance of Training to Remain Competitive in Today’s Market

By Kevin Femal
Marketing & Industry Awareness Committee Member
EMS Industrial, Inc.

Since today’s marketplace has oftentimes been labeled the “Great Resignation,” companies need to dial up the focus on training their employees more than ever. This is true for several reasons. Let’s start with the current wage dynamic across the globe. All companies have been forced to examine their current wage scale to ensure they’re competitive in their respective markets. In many cases, companies are giving out more or larger raises than they’ve been accustomed to in an effort to stay competitive. This goes for both retaining and attracting talent. After the dust settles on the process of giving larger or more frequent raises, the company now must shift gears to strategizing on how the company can afford to give those larger or more frequent raises. The answer is greater productivity. And as much as we’d love to snap our fingers to increase productivity by 10%, the true answer lies in a company’s ability to train its workforce. With a greater focus on training, companies can increase productivity, which can far exceed the cost of increased wages.

Another reason training needs to be a larger focus in the current climate is because our employees are asking for it! McKinsey & Company, one of the world’s most renowned businesses in researching employee thought processes, recently conducted a survey of roughly 14,000 employees who left their job. The survey focused on why people quit their job in the past 12 months. The No. 1 reason for employees leaving their company, even above total compensation or a bad boss, was the lack of career development and advancement. Many EASA members will struggle with a plethora of career advancement opportunities yet nobody can make an excuse for struggling with development. Development is training. Our employees are asking us to develop them, teach them more and allow them to give more back to the business. And tying in the first paragraph of this article, we would gladly give our team members more substantial raises if we knew, as a business, their output or productivity would increase because of it. Let’s give them the tools to do so!

Where does EASA come into this equation? The great thing for all EASA members is we get the opportunity to take advantage of a large catalog of industry-specific content. Once on the EASA website (easa.com), click the Training tab on top to unlock a wide range of content suited for technicians, machinists, managers, marketers, inside sales and outside sales.

  • Monthly Webinars: Each month, EASA hosts a monthly webinar for 30 minutes plus Q&A time, which is designed to help train our teams. Topics vary from fitting a sleeve bearing to a remote condition monitoring overview to converting motors from horizontal to vertical mount. And remember, they’re recorded in case an employee can’t view the day of the webinar.
  • Seminars: EASA offers outstanding 2-day seminars around the country focused on repair team development. Topics that will be tackled in the upcoming nine months include Mechanical Repair Fundamentals of Electric Motors, Fundamentals of DC Operations & Repair Tips, Fundamentals of Pump Repairs, Principles of Medium and Large AC Motors and Root Cause Failure Analysis.
  • Currents: Each month EASA distributes Currents, a publication aimed at giving you industry updates, training content, technical articles, a list of new EASA members and a list of EASA chapter and regional meetings.
  • Tech Tips: In today’s world, everyone enjoys concise content. Similar to a toolbox talk topic, tech tips are designed to give your team a quick reminder or an easily digestible fact. You will find these tech tips in both EASA’s emails and monthly editions of Currents.
  • Training Films Archive: One of the most underutilized training tools is EASA’s archived training films. These films cover 25 different topics that will help to develop even the most tenured of technicians.
  • Past Convention Presentations: Many forget that EASA keeps all of their past convention presentation material. This material is great for sales, management, technicians and machinists. Within two minutes of scrolling, you will see 3-4 training materials that can benefit your team today.
  • Private Webinars and Seminars: EASA will even offer private seminars to companies, EASA Chapters or EASA Regions. Topics range from motors to pumps to vibration/ balancing to marketing and sales.

Available Downloads

Importancia del punto de mejor eficiencia (BEP)

Importancia del punto de mejor eficiencia (BEP)

Entendiendo los factores involucrados para determinar el desempeño de la bomba

Nota del editor: Este artículo técnico "repetido" fue publicado por primera vez en la edición de Currents de enero del 2012.


Eugene Vogel
Especialista de Bombas y Vibraciones de EASA

Cuando trabaje con bombas, seguramente encontrará instancias en las que se hace referencia a la curva de la bomba, junto con una serie de parámetros asociados con ella. Un parámetro clave de la curva de la bomba es el Punto de Mejor Eficiencia (BEP). Este concepto simple de un punto de operación que produce la operación más eficiente no es difícil de visualizar. Para motores eléctricos, la eficiencia varía con la carga; la mejor eficiencia está en alrededor del 75% de carga. Sin embargo, con las bombas rotodinámicas, que incluyen bombas centrífugas y de flujo axial, hay que considerar cuatro parámetros clave, uno de los cuales es la eficiencia. Estos cuatro parámetros son cabeza, caudal (también conocido como capacidad o volumen), potencia y eficiencia.

Available Downloads

Important Considerations for Accommodating Pump Repair in Your Service Center

Important Considerations for Accommodating Pump Repair in Your Service Center

Gene Vogel
EASA Pump & Vibration Specialist

It happens to just about every EASA service center. A machine shows up for repair; it has leads, and there’s a motor, but the machine is a pump. Most often, it’s a close-coupled pump or a submersible pump. If your response is, “We don’t work on those here,” because you’re thinking, “We don’t know anything about repairing pumps,” you may be turning your back on some very profitable work.

As I detailed in my February Currents article, pump repair can be a very profitable expansion area for service centers that specialize in electric motor repair only. If you agree that pump repair would be a good fit for your business, the next step is to evaluate what changes your facility needs to accommodate repairing pumps. You will find that you have much of the necessary equipment from repairing electric motors. The mechanical characteristics of motors and centrifugal pumps are very similar. Depending on the type of pump, there may be very little additional that you need.

Available Downloads

Increase Throughput & Profitability by Training from Rework Data

Increase Throughput & Profitability by Training from Rework Data

Matthew Conville, P.E.
EASA Technical Support Specialist

Well, it is March, and our New Year’s resolutions for your service center should be moving full steam ahead. Some of the typical resolutions we hear are, “We want to be more efficient at getting work out the door,” “We want to improve our bottom line to be more profitable,” and “We really want to provide training for our people.”

These are all great resolutions, but it can be very difficult to execute them. Some of the feedback we receive is, “We use 6S in our service center, but we aren’t any faster,” “We’re organized now and using lean principles, but we aren’t more profitable than before,” and “We want to provide training for our employees, but we don’t know what to train them on to help them in their current role.”

While there is not a one-size-fits-all answer to these resolutions, we can use data in our service center to help us accomplish them. 

So, what data are we talking about? Does it require some sort of fancy computer system? The data to be collected is on nonconformities and, subsequently, the rework required to fix the non- conformance. This does not require an elaborate tracking system to be extremely effective. 

To accomplish our resolutions, we will define nonconformity and rework, discuss some examples of this in a service center, consider what ISO 9001 says about nonconformity and how it should be dealt with and how to move forward with this knowledge.

Available Downloads

Increased traffic to easa.com helps promote awareness

Increased traffic to easa.com helps promote awareness

Kevin Krupp 
York Repair, Inc. 

As most of you know, EASA recently completely redesigned its Web site at easa.com. This was done to add many new features, including a whole new“look,”improvedmem­ber search capabilities, an online discussion forum, easy-to-use calen­dar, expanded member and chapter listings, archives, and the ability for authorized company representatives to view contact information. 

Available Downloads

Industry Awareness: More than publication of articles

Industry Awareness: More than publication of articles

Campaign efforts also include industry representation, presentations

George Flolo
The Flolo Corp.
Bensenville (Chicago), Illinois
Chair, Marketing & Industry Awareness Committee

One of the items discussed at the Marketing & Industry Awareness Com­mittee meeting held September 27 in St. Louis was the continuing success of EASA’s Industry Awareness Campaign. 

A goal of the campaign is to get EASA staff-authored technical articles in the trade press. And we continue to do very well in that area. That success is measured in the number of media “impressions.”  

Since October 1, 2007, more than 1,639,000 media impressions related to EASA appeared in the trade and local media.  

Available Downloads

Industry Training: A Huge Challenge, Advantage for Companies That Commit to the Process

Industry Training: A Huge Challenge, Advantage for Companies That Commit to the Process

Tim Hebert
Management Services Committee Member
A&W Electric, Inc.

Wow! The Management Services Committee knew training was a hot issue, but the response to the 2023 EASA Handling Training Needs Pulse Survey was incredible! The committee received 115 member responses that included thoughts, challenges and plans on training our employees. Results show that approximately 80% of respondents have a training program with nearly 40% of all respondents using a combination of classroom and on-the-job training.

Available Downloads

Instalando o Transfiriendo el Software de AC Motor Verification and Redesign (ACR) de EASA

Instalando o Transfiriendo el Software de AC Motor Verification and Redesign (ACR) de EASA

Gene Vogel
Especialista de Bombas & Vibraciones de EASA

Periódicamente, los miembros deberán actualizar los sistemas informáticos con el programa de software ACR instalado. El procedimiento para mover el programa a una nueva computadora depende de la versión instalada actualmente. A principios de 2022, se lanzó una actualización con una estructura de base de datos modificada, y la instalación de la actualización incluyó una reestructuración automática de las tablas de datos para el historial de motores rediseñados de los miembros. Por lo tanto, si la instalación actual de un miembro no se ha actualizado, el procedimiento para mover el programa a una nueva computadora incluirá la actualización y los cambios automáticos en la tabla de datos.

Al mover el programa a una nueva computadora en todos los casos, se recomienda descargar una nueva copia del archivo de instalación del programa desde el sitio web de EASA, easa.com. Los miembros deben iniciar sesión en su cuenta con sus credenciales de EASA y hacer clic en la pestaña My Account en la parte superior de la página. Luego, los miembros deben seleccionar el elemento Descargas en el medio de esa página. Se mostrará una lista de los productos descargables de EASA. Seleccione “AC Motor Verification & Redesign - Ver. 4 (Windows) - Download” de la lista. El archivo de instalación del programa se descargará en su computadora. Si el programa no está en la lista, comuníquese con nosotros con respecto a la compra del programa. La descarga del archivo de instalación del programa también se puede encontrar buscando "Update" en la página de inicio de EASA y seleccionando “Important Software Update” en los resultados. Por supuesto, debe iniciar sesión con sus credenciales de EASA.

En la nueva computadora, asegúrese de que los archivos del programa ACR, C:\Program Files\ MotorDB, no estén en el nuevo disco duro. (Es posible que el programa se haya movido de la computadora anterior si los archivos se transfirieron desde la antigua computadora). Los archivos de datos del programa se deben copiar de la computadora anterior al nuevo disco duro, así que mueva C:\Users\LoginName\Documents\carpeta EASA Winding Data al nuevo disco duro. Si esta carpeta no está en la computadora anterior, puede haber una versión muy antigua del programa con los archivos y datos del programa en la carpeta C:\ Users\LoginName\Documents\AcRedesign. En cualquier caso, copie la carpeta completa en el nuevo disco duro de la computadora en la misma ubicación. Con los archivos de datos del programa copiados en el nuevo disco duro, la nueva computadora está lista para la instalación del programa. Nota: Si no desea tener el historial de motores rediseñados de los miembros de EASA en la nueva computadora, simplemente omita la transferencia de los archivos de datos al nuevo disco duro.

El siguiente paso es ejecutar el programa de instalación que se descargó del sitio web de EASA; simplemente haga doble clic en el archivo para iniciar la instalación. El programa le solicitará el nombre de su empresa y su número de miembro de EASA. Por favor utilice su número de miembro de EASA. Se le pedirá sus “directories for databases”; se recomienda utilizar las ubicaciones predeterminadas. Póngase en contacto con el soporte técnico de EASA si es necesario utilizar ubicaciones alternativas del directorio de datos.

Además, en este cuadro de diálogo rápido hay una selección para “Start with no custom motors” o “Transfer existing motors from previous version". Si los archivos de datos han sido copiados desde la computadora anterior, seleccione “Transfer existing motors from previous version” y asegúrese de que el campo “previous ACR database” apunte a la ubicación correcta. Si la base de datos anterior es de una versión antigua aparecerá una pantalla de texto a medida que se copian y reestructuran los registros. La instalación debería entonces continuar; cuando se complete, aparecerá un mensaje con opciones para “Create a desktop icon” y “Run the EASA program”.

Si el programa no se ejecuta cuando finaliza la instalación, inícielo manualmente desde el icono o desde el menú del programa de Windows; habrá una carpeta EASA en el menú del programa de Windows. Cuando el programa arranca, buscará una conexión a Internet para verificar las actualizaciones y la base de datos. Si encuentra una conexión a Internet, el programa puede reiniciarse una o dos veces a medida que se instalan las actualizaciones; tenga paciencia, ya que esto puede demorar varios minutos según la velocidad de la conexión a Internet.

Cuando el programa haya terminado de instalar las actualizaciones, aparecerá la pantalla de bienvenida. Si sus usuarios no están familiarizados con el funcionamiento del programa, los tutoriales disponibles en la pantalla de bienvenida son un excelente recurso. Existen disponibles tutoriales para el funcionamiento básico del software, búsquedas en bases de datos de motores, uso de la cuadrícula de selección y para efectuar rediseños básicos. Incluso los usuarios experimentados pueden encontrar útiles estos tutoriales. Para acceder a las funciones del programa, cierre la pantalla de bienvenida haciendo clic en la X junto a Bienvenida en la pestaña de la parte superior.

Sugerencia: El programa incluye una base de datos de clientes para que cada motor rediseñado pueda etiquetarse con un cliente específico. Es útil si los clientes habituales se configuran con anticipación para que los usuarios puedan seleccionarlos de la lista en lugar de escribir el nombre del cliente cada vez que se use. Esto también ayuda a evitar que un cliente se ingrese varias veces con diferentes nombres. Seleccione el elemento Database->Custome del menú para acceder a la base de datos de clientes.

Si encuentra algún problema durante el proceso de instalación del programa, comuníquese con el Soporte técnico de EASA. Además, el programa tiene opciones para usar la base de datos local o en línea de bobinados de motores, que es diferente de la base de datos del historial de motores rediseñados de los miembros, y opciones para la transferencia automática de datos de motores rediseñados a EASA. Para obtener recomendaciones sobre cómo cambiar su configuración predeterminada, comuníquese con el Soporte técnico de EASA.

Si necesita ayuda para transferir o instalar este software puede contactar con el soporte técnico de EASA

*Horas laborales de EASA: Lunes a Viernes, 8 a.m. – 4:30 p.m. Hora Central de USA,  Para recibir asistencia, deberá proporcionar el número de identificación de su empresa. Todas las consultas se responden en el orden de llegada de las mismas.

Available Downloads

Installing or Transferring the EASA AC Motor Verification and Redesign (ACR) Software

Installing or Transferring the EASA AC Motor Verification and Redesign (ACR) Software

Gene Vogel
EASA Pump & Vibration Specialist

Periodically, members will need to update computer systems with EASA's AC Motor Verification & Redesign (ACR) software program installed. The procedure for moving the program to a new computer depends on the version of the currently installed program. Early in 2022, an update was released with a modified database structure, and installation of the update included an automatic restructuring of the data tables for members’ redesigned motor history. Therefore, if a member's current installation has not been updated, the procedure for moving the program to a new computer will include the update and automatic data table changes.

When moving the program to a new computer in all cases, it is recommended that a new copy of the program installation file be downloaded from the EASA website, easa.com. Members should log in to their website account with their EASA credentials and click the My Account tab at the top of the page. Members should then select the Downloads item in the middle of that page. A list of the EASA downloadable products will be displayed. Select “AC Motor Verification & Redesign - Ver. 4 (Windows) - Download” from the list. The program installation file will be downloaded to your computer. If the program is not listed, contact EASA Member Services regarding your purchase of the program. The download for the program installation file can also be found by searching for “Update” from the EASA home page and selecting “Important Software Update” from the results. Of course, you must be logged in with your EASA credentials.

On the new computer, be sure the ACR program files, C:\Program Files\MotorDB, are not on the new hard drive. (The program may have been moved from the old computer if files were transferred from the old computer.) The program data files should be copied from the old computer to the new hard drive, so move the C:\Users\LoginName\Documents\EASA Winding Data folder to the new hard drive. If this folder is not on the old computer, a very old version of the program may have the program data files in the C:\Users\LoginName\Documents\AcRedesign folder. In either case, copy the entire folder to the new computer hard drive in the same location. With the program data files copied to the new hard drive, the new computer is ready for the program installation. Note: If there is no desire to have the members’ redesigned motor history on the new computer, then simply skip transferring the data files to the new hard drive.

The next step is to run the install program that was downloaded from the EASA website; simply double-click the file to start the installation. The program will prompt for your Company Name and your EASA Member Number. Please use your EASA Company Member Number. You will be prompted for your “directories for databases”; it is recommended that the default locations be used. Please contact EASA Technical Support if there is a need to use alternate data directory locations.

Also, on this prompt dialogue there is a selection to “Start with no custom motors” or “Transfer existing motors from previous version.” If data files have been copied from the old computer, select “Transfer existing motors from previous version” and be sure the “previous ACR database” field points to the correct location. If the old database is from an older version, a text screen will display as the records are copied and restructured. The installation should then continue; when complete, a prompt will appear with options to “Create a desktop icon” and to “Run the EASA program.”

If the program does not run when the installation completes, start the program manually from the icon or from the Windows program menu; there will be an EASA folder in the Windows program menu. When the program initially starts, it will look for an internet connection to check for program and database updates. If an internet connection is found, the program may restart one or two times as updates are installed – be patient as this may take several minutes depending on internet connection speed.

When the program has finished installing updates, the Welcome screen will be displayed. If your users are not familiar with the program operation, the Tutorials available from the Welcome screen are an excellent resource to get them going. Tutorials for Basic Software Operation, Motor Database Searches, Using the Selection Grid and doing Bare Core Redesigns are available. Even experienced users may find these tutorials helpful. To access the program features, close the Welcome screen by clicking the X next to Welcome on the tab at the top.

Tip: The program includes a Customer database so that each redesigned motor can be tagged to a specific member Customer. It is helpful if frequently used Customers are set up ahead of time so that users can select them from the list rather than typing the Customer name each time. This also helps to prevent a Customer from being entered multiple times with various spellings. Select the Database->Customer item from the menu to access the Customer database.

If any problems are encountered during the program installation process, please contact EASA Technical Support for assistance. Also, the program has options for using the Online or Local Motor Winding Database, which is different from the members’ redesigned motor history database, and options for the automatic transfer of redesigned motor data to EASA. For recommendations on changing these from their default setting, contact EASA Technical Support.

You may contact EASA technical support if you need help installing or transferring this software

*EASA business hours: 8:00 a.m. – 4:30 p.m. Central, Monday through Friday. You must include your company ID number when you submit an inquiry. All technical support requests are handled in the order received.

 

Available Downloads

Interpoles and Compensating Windings in DC Machines – What Do They Do?

Interpoles and Compensating Windings in DC Machines – What Do They Do?

Mike Howell, PE
EASA Technical Support Specialist

Unlike their AC counterparts, DC machines do not have rotating magnetic fields. Rather, there are fixed magnetic field axes for the field (direct axis) and armature (quadrature axis). Even though the armature is rotating, the magnetic field axis in the armature is fixed thanks to commutation, which allows the direction of current in an armature conductor to change as it passes from the region under one main field pole to the next.

Available Downloads

Interpolos y Devanados de Compensación - ¿Qué es lo que hacen?

Interpolos y Devanados de Compensación - ¿Qué es lo que hacen?

Mike Howell, PE
Especialista de Soporte Técnico de EASA

A diferencia de sus homólogos de CA, las máquinas de CC no tienen campos magnéticos rotativos. Más bien, existen ejes de campo magnético fijos para el campo (eje directo) y la armadura (eje en cuadratura). Aunque la armadura esté girando, el eje del campo magnético de la armadura está fijo gracias a la conmutación, lo que permite que la dirección de la corriente en un conductor de la armadura cambie a medida que pasa debajo de un polo de campo principal al siguiente.

Available Downloads

Invest in Developing Leaders to Ensure Ongoing Success

Invest in Developing Leaders to Ensure Ongoing Success

Tim Hebert
Management Services Committee Member
A&W Electric, Inc.

As leaders, we are responsible for developing those around us to maximize their performance and prepare them for larger roles within our organizations. This facet of management presents several challenges, not the least of which is a shortage of experienced technicians. While we have mostly focused on filling technical positions, we can make a similar case for acquiring management, sales and support talent.

Available Downloads

Job Descriptions for EASA Service Centers

Job Descriptions for EASA Service Centers

Written job descriptions can be tremendously helpful in making your operations run more smoothly, especially since employees are usually more productive when they know exactly what is expected of them. EASA’s publication, Job Descriptions For EASA Service Centers, provides a starting point for members who wish to write or revise job descriptions for their individual repair centers.

Job descriptions for service center personnel:

  • Service center manager
  • Rewind department supervisor
  • Rewind department assistant supervisor
  • Motor rewind technician
  • Motor rewind helper
  • Mechanical department supervisor
  • Motor mechanic assistant supervisor
  • Motor mechanic
  • Machine department supervisor
  • Industrial electronics manager
  • Industrial electronics technician

Job descriptions for office/sales personnel:

  • Accounting supervisor/Full-charge bookkeeper
  • General accounting clerk/General bookkeeper
  • Cost accounting clerk
  • Information technology (IT) manager
  • Systems operator/Data entry clerk
  • Estimator/Customer service
  • Purchasing agent
  • Receptionist
  • Truck driver
  • Sales manager
  • Inside sales representative
  • Outside sales representative

La Opción para la Reparación de Bombas en los Centros de Servicio

La Opción para la Reparación de Bombas en los Centros de Servicio

Gene Vogel
Especialista de Bombas & Vibraciones de EASA

Cuando EASA adoptó el eslogan “The Electro-Mechanical Authority,” esto fue mucho más que una acción superficial. Mientras el negocio de la reparación de motores eléctricos es una actividad que genera valor para la gran mayoría de centros de servicio asociados a EASA, las máquinas rotativas de todo tipo son un segmento importante del negocio de la reparación y de la rentabilidad general de los centros de servicio. Junto con los motores eléctricos, las bombas roto-dinámicas (bombas centrífugas y de flujo axial) son la categoría más grande de máquinas reparadas en los centros de servicio adscritos a EASA. Las razones para la expansión en el segmento de la reparación de bombas son evidentemente claras: 

  • Las bombas son máquinas costosas y normalmente no son fabricadas en dimensiones convencionales. Los motores eléctricos NEMA e IEC fabricados en serie, son máquinas básicas y varían muy poco entre un fabricante y otro. Pero las bombas están mucho menos estandarizadas. No existen carcasas estándar para dos de las bombas más comunes: Las sumergibles y del tipo turbina vertical. 
  • En muchas aplicaciones, el corazón de la bomba, el impulsor (impeller) se mecaniza a una medida especial para que trabaje en una aplicación específica. Los repuestos requieren un tiempo de entrega prolongado, haciendo que la reparación sea una opción mucho más viable.  
  • En tiempos de recesión económica, los principales segmentos de aplicaciones de bombas son seguros. El agua municipal, las aguas residuales y el control de inundaciones tienen una financiación y demanda estables. 

Los centros de servicio miembros de EASA que buscan expandirse o que estén interesados en reemplazar los mercados de reparación volátiles existentes, han visto en la reparación de las bombas algo idóneo. Por lo general, la mayoría de los mismos repara bombas roto-dinámicas. Por mucho, las bombas son la categoría más grande de máquinas accionadas por motores eléctricos.

Si un centro de servicio está reparando motores eléctricos, entonces es casi seguro que algunos de estos motores estén accionando bombas y que con sus clientes actuales existan perspectivas para reparar las bombas.

Lead Wire Sizing 101

Lead Wire Sizing 101

Presented by Mike Howell
EASA Technical Support Specialist

Choosing an appropriate lead wire for a new stator winding is an important task. The manufacturer’s information is not always available, or the number of circuits or external connection may have been changed, requiring a redesign of the lead wire.  This webinar reviews: 

  • Commonly available materials 
  • Lead wire insulation classes 
  • Lead wire voltage classes 
  • General sizing procedures 

This webinar is intended for repair technicians and anyone who needs to select lead wire.  

Available Downloads

Lead Wire Sizing for Three-Phase Machines

Lead Wire Sizing for Three-Phase Machines

Mike Howell, PE
EASA Technical Support Specialist

EASA recommends using the lead wire specified by the original equipment manufacturer (OEM) whenever possible. If not available, some guidance is provided in section 6 of the EASA Technical Manual and an online calculator is available at easa.com/calculators to determine a minimum recommended size based on temperature rating, expected current, number of leads and type of connection. This article will describe the calculator’s function. It’s important to note that there is no one right answer in this process when the original information is unknown. When selecting a lead wire, the following topics should be considered.

Available Downloads

Leadership: Good Leader, Bad Leader

Leadership: Good Leader, Bad Leader

Clint Swindall,
Verbalocity, Inc., San Antonio, TX

Leaders often lead employees based on the way they’ve been led in the past. As leaders, we can all think of good bosses and bad bosses from our past. Good or bad, there were lessons to be learned. In this 15-minute session, the speaker discusses what makes bad leaders bad and good leaders good, with an eye on person introspection of our own leadership abilities.

Available Downloads

Leadership: Leading the Change

Leadership: Leading the Change

Clint Swindall
Verbalocity, Inc.

The pandemic of 2020 is creating change in virtually all organizations. From changes in work routines to uncertainty of security in the future, employees are faced with change (both professionally and personally). In this 15-minute recording, the speaker addresses a very specific thing you can do to help employees through these changing times.

Available Downloads

Leadership: Playing the Proper Role

Leadership: Playing the Proper Role

Clint Swindall
Verbalocity, Inc.

As a professional, you are contributing to your organization with exceptional skills required for your area of expertise. As a leader, you are contributing based on your ability to successfully fill four specific roles of leadership. In this 15-minute recording, the speaker takes a look at those four roles and how to fill the right role for each leadership situation.

Available Downloads

Leading Through Crisis

Leading Through Crisis

Practical, Powerful Help to Increase Sales Management Effectiveness NOW

Mike WeinbergIn this new webinar created specifically for owners, general managers and sales leaders, highly rated 2019 EASA speaker Mike Weinberg shares strong words of encouragement, practical coaching tips, and powerful best practices for leading (sales teams) through this unique time.

This session covers:

  • Critical Characteristics for Leading Through Crisis
  • Balancing Empathy & Accountability
  • Remaining On-Mission: The Duty of Sales
  • Success Stories from Sellers
  • Choosing Perseverance & Positivity over Pity Parties & Panic
  • Fly. The. Airplane. – Focusing Exclusively on Fundamentals
    • 1:1 Accountability for Results, Pipeline & Activity
    • Sales Team Meetings that Energize & Equip Salespeople
    • Addressing Underperformance & Complacency
    • Pointing the Team
    • Arming the Team

Mike's passion is helping sales teams win more New Sales!

He's become one of the most trusted and sought after sales experts and has led workshops and consulted on five continents in the past year. Mike is the author of three Amazon #1 Bestsellers: #SalesTruth, New Sales. Simplified., and Sales Management. Simplified. which is the most reviewed sales management book on Amazon and been called "arguably the best book ever written on sales management." Inc. Magazine also heaped praise on his work, saying that it’s “the #1 book every sales leader should read.”

Available Downloads

Legal & HR Factors to Survive COVID-19

Legal & HR Factors to Survive COVID-19

Are you aware of the federal employment law related to COVID-19 that could impact your business? This EASA-exclusive webinar will make sure you are in compliance!

If your company was granted a Paycheck Protection Program (PPP) loan, do you know all the parameters for making sure the loan is forgiven? View this webinar recording to be sure!

Presented by expert attorney and consultant David Schein, MBA, JD and PhD, President and General Counsel of Claremont Management Group. David has been a highly-rated and well-received speaker at past EASA conventions.

Available Downloads

Let's Get Organized: Reduce Waste & Optimize Productivity

Let's Get Organized: Reduce Waste & Optimize Productivity

Mike Howell
EASA Technical Support Specialist

This presentation focuses on helping service centers get organized using the "5S" pillars. 5S is an effective methodology used to reduce waste and optimize productivity through maintaining an orderly workplace and using visual indicators to achieve more consistent results. Successful implementation frees up wasted space and reduces excess inventory and unplanned downtime.

The 5S pillar or phases are:

  • Sorting
  • Straightening
  • Shining
  • Standardization
  • Sustaining

Several simple simulation activities will amplify the benefits of implementing these approaches.

Leveraging Marketing Automation

Leveraging Marketing Automation

Justin Hatfield
Marketing & Industry Awareness Committee Member
HECO - All Systems Go
Kalamazoo, Michigan

Do you ever wonder to yourself, "How do all of these people have this much time to be on social media?"

So many businesses, even in our industry, post content weekly, daily or hourly. In addition to this, they send out regular email blasts, have a blog or purchase advertisements online. 

How do they have the time to get it all done? Do they have a team of marketing people doing all of this for them?

Likely not.

For the vast majority of people in our industry involved in online marketing, the answer isn't a large marketing staff, but a tool called marketing automation.

Available Downloads

Link Up with LinkedIn

Link Up with LinkedIn

Crystal Bristow
EASA Marketing & Industry Awareness Committee Member
Jenkins Electric Co.

Of all the social media options, look to LinkedIn to build your online presence within the electromechanical industry. It’s professional, requires less engagement than traditional social media and is used the most by our industry.

To make the most of the platform, review your profile and check for a few must-haves (or use this as a starting point):

  • Upload a profile picture. It should be professional (selfies, boat pics or pictures with alcohol are no-go’s). Don’t worry about going to a photo studio. Ask a coworker with a smartphone snap a picture of you outside in natural lighting with a clean background.
  • Check that your job title, location and company are current.
  • Write an “about” statement highlighting your career accomplishments, certifications and expertise. Think of this as your “personal elevator speech.”
  • List your current and previous positions and add a summary to each (just a few short sentences about your role and responsibilities).
  • Next, start exploring, connecting and engaging.

Give LinkedIn five minutes a couple of times a week, and see industry peers and relevant trends show up in your feed. And, of course, follow EASA for updates and valuable content. 

 

llevando a Cabo Una Inspección Para Obtener Una Confiabilidad a Largo Plazo

llevando a Cabo Una Inspección Para Obtener Una Confiabilidad a Largo Plazo

Por Steven Carbone
Miembro del Comité de Educación Técnica
Industrial Electro-Mechanics

En el actual entorno competitivo cada vez mayor, los usuarios finales buscan centros de servicio de máquinas eléctricas rotativas que aumenten su oferta de valor agregado. Una de las formas más fáciles para que un centro de servicios logre esto es efectuando una inspección minuciosa y detallada de los equipos que reciben para reparación. Los resultados de dicha inspección permiten mejorar la confiabilidad de los equipos que se logra a través de los resultados de la evaluación y las recomendaciones que ofrece el centro de servicio para prevenir fallas recurrentes y mejorar el tiempo medio entre fallas.

Available Downloads

Los Ambientes Controlados y los Cuartos Limpios Previenen la Contaminación en los Centros de Servicio

Los Ambientes Controlados y los Cuartos Limpios Previenen la Contaminación en los Centros de Servicio

Tom Bishop, P.E.
Especialista Sénior de Soporte Técnico

De vez en cuando escuchamos el término “cuarto limpio” para nombrar un área de bobinado aislada físicamente de las demás zonas del centro de servicio (Figura 1). La finalidad principal de tal encerramiento (Figura 2) es prevenir que los materiales y los bobinados se contaminen con polvo y suciedad que pueda estar presente en otros sitios del centro de servicio. Algunos centros de servicio construyen estos encerramientos porque se esfuerzan en proporcionar el ambiente práctico más limpio para los trabajos de rebobinado y otros los usan también durante el proceso de instalación de los rodamientos. Los recintos tipo cuarto limpio también pueden beneficiar a las instalaciones ayudando a minimizar problemas de calidad y aumentando el volumen de producto conforme.

Aquí, exploraremos la diferencia entre un ambiente controlado y un cuarto limpio, los requisitos para ambos y proporcionaremos detalles para ayudarle a determinar si quiere añadir a sus instalaciones un ambiente controlado o un cuarto limpio.

Available Downloads

Making Shaft Lift Adjustments in Vertical Turbine Pumps

Making Shaft Lift Adjustments in Vertical Turbine Pumps

Best practices for safe operation and easy accessibility.

Gene Vogel
EASA Pump & Vibration Specialist

Vertical turbine pumps (VTP) commonly have rotors with multiple mixed-flow impellers (sometimes 12 or more) that are supported by a vertical pump motor. Such designs offer a lift adjustment for raising or lowering the pump rotor to properly position the impellers within the bowl. Depending on the type of pump, this may be critical for maximizing pump efficiency and could have a significant impact on motor load (current) and reliability. Given the importance of VTP lift adjustments, it is necessary to recognize that procedures vary with the characteristics of the pump and motor.

READ THE FULL ARTICLE

Management Pulse survey results focus on safety analysis and work instructions

Management Pulse survey results focus on safety analysis and work instructions

Tom Barnes
Compliance Specialists, Inc.

In the most recent Management Pulse survey, members were asked to respond to questions regarding the use of work instructions and job safety analysis.

Available Downloads

Management Pulse survey results: Accounting Information Systems

Management Pulse survey results: Accounting Information Systems

Steve Rossiter
Energy Management Corp.

Like some of you old timers, I started my business with an accounting system consisting of columnar ledger sheets. Each evening I would take a pencil and enter all of the sales in one column, costs in another and expenses in another. I hoped I had made a profit and that my accountant could make sense of it all come tax time. We have come a long way since those days where computers and sophisticated ERP (enterprise resource planning) software is now common. There is a trend to develop real-time connection and data extraction in all aspects of our business from the shop floor to the bank.

The first “Management Pulse” survey provides insights that can help members identify accounting system trends and benchmark their business based on data provided directly from EASA membership.

Management Pulse survey results: Corporate compliance, performance and disciplinary actions

Management Pulse survey results: Corporate compliance, performance and disciplinary actions

Janet Schmidlkofer
K&N Electric Motors, Inc.

Thanks to all who took a few moments to respond to our most recent Management Pulse survey on corporate compliance, performance and disciplinary actions. I imagine this is a topic that does not reside at the top of the “What am I going to work on today?” list. Unfortunately, to make matters worse, you may never experience the need to prove you have a program. Of course that is the good news. I will quickly review the results from the 146 survey respondents and then share a few thoughts and ideas.

Available Downloads

Management Pulse survey results: Creative ways to provide "employee perks"

Management Pulse survey results: Creative ways to provide "employee perks"

Jimmie Williams, Jr.
Bardleys', Inc.

This is the eighth in a series of “Management Pulse” articles written by members of your Management Services Committee. The “Pulse” program strives to bring useful information to managers and owners to prepare them for the daily struggles in our industry. The committee has developed the “Pulse” surveys to gather data from member participants to help get a flavor for what our industry is currently doing in several areas. The articles summarize the findings from these surveys.

Available Downloads

Management Pulse survey results: Customer credit and payment options

Management Pulse survey results: Customer credit and payment options

Jimmie Williams, Jr.
Bradleys', Inc.

Cash flow is the heartbeat of every successful service business. Balancing the ebb and flow between Accounts Payable and Accounts Receivable is a struggle, especially when the customers do not pay within the negotiated term. If a company’s credit requirements are too stringent, we may lose good customers. If too lenient, we are left holding an empty money bag. We’ve all been burned at least once by a publicly traded corporation due to their financial failure. Of the 188 respondents to the recent Management Pulse survey on customer credit applications, 85% extend credit terms to their customers.

Available Downloads

Management Pulse survey results: Employee drug testing policies in the workplace

Management Pulse survey results: Employee drug testing policies in the workplace

Tom Barnes
Compliance Specialists, Inc.

Can you remember the day when running an EASA business was about just repairing and selling motors, pumps, and other similar types of electromechanical equipment? 

Those were the times when you didn’t have to worry about being sued by a herd of lawyers trying to take a chunk of your business. Well, times have changed.

Each and every one of us knows how a drug or alcohol impaired employee will not only be a danger to themselves and others, but how they can affect quality, production, and a host of other issues. 

Several years ago, owners and managers found that a solution to help minimize this from occurring was to have a fair drug testing policy. This testing could include pre-employment, post-accident, for cause, random testing, or a combination of all or some of these. These drug testing policies were put in place to deter on-the-job drug and alcohol use and from this writer’s perspective, it works.

Available Downloads

Management Pulse survey results: Employee training

Management Pulse survey results: Employee training

Syndy Thrash
Evans Enterprises, Inc.

You’ve probably heard the adage that you can’t teach an old dog new tricks. Well, if you’ve ever had a dog, you know that with careful training, that’s not always true.

Along the same lines, those of us in the electromechanical repair industry have probably heard an employee or coworker say:  “We’ve always done it that way. If it works, why change?”  Here, too, with the proper training, most of the time we can learn a better, more efficient way do something that we’ve always done.

The latest “Management Pulse” survey on employee training provides valuable information on the resources, time devoted to and emphasis on training reported by those who participated in the survey.

Available Downloads

Management Pulse survey results: Employees, company image, project management and templates

Management Pulse survey results: Employees, company image, project management and templates

Lenwood Ireland
Ireland Electric Co.
 
It seems that in the management of people, there is often the need for a new form or an additional process to protect our most important asset: people. The first three questions of February’s “Management Pulse” survey dealt with this topic.

Available Downloads

Management Pulse survey results: Focus on sexual harassment in the workplace

Management Pulse survey results: Focus on sexual harassment in the workplace

Stan Martindell
Topeka Electric Motor Repair, Inc.

In 2017, the U.S. Equal Employment Opportunity Commission (EEOC) recovered $46.3 million for workers alleging sexual harassment. With the rise of the #MeToo movement, this number is likely to keep increasing. It is imperative that employers are informed on what sexual harassment is, who may be liable for harassment, and policies and procedures that are in place or should be in place to help prevent and to report sexual harassment.

Available Downloads

Management Pulse survey results: Healthcare and other benefits

Management Pulse survey results: Healthcare and other benefits

Martha Meza-Lara
Bellwood Electric Motors, Inc.

The most important asset to any company is its people. Keeping employees happy in the workplace can make your company a stronger and unwavering force within our industry. To employ a good work force, we must be competitive with the best employers. We should not let “great” candidates slip away without considering all the available incentives that may convince them to come to work for us — and stay.  With these incentives, we create the best atmosphere for employee retention. What incentives do your fellow EASAs have? Do these go beyond just the standard benefits? And how do does your company compare?

Available Downloads

Management Pulse survey results: Healthcare costs

Management Pulse survey results: Healthcare costs

Syndy Thrash
Evans Enterprises, Inc.

In recent years, the cost of providing healthcare has skyrocketed for most companies. These significantly increased costs have caused financial pain and hardships for their employees as well.

The latest Management Pulse survey examines what EASA service center owners report as they and their employees deal with the increasing costs of healthcare.

Available Downloads

Management Pulse survey results: Replacing management personnel

Management Pulse survey results: Replacing management personnel

Charles Bailey
Kentucky Service Company, Inc.

From time to time it is necessary, through retirements, reductions, or people just moving on, to replace management personnel. Management personnel are from the foreman level all the way up the management line. The process of identifying replacement personnel can be daunting to say the least. Where do we find suitable candidates? If we do not have a suitable candidate within our organization, where do we go?

Available Downloads

Management Pulse survey results: Return to Work programs and procedures

Management Pulse survey results: Return to Work programs and procedures

Back in the “good ol’ days,” running a motor service center involved simply repairing and rewinding motors and pumps, and doing so in such a manner as to minimize the likelihood of an employee getting injured while doing so.  Even 10 years ago when we heard of things like DART, TRI, or LWD rates, we would just kind of stare at those people and wonder what kind of foreign language they were speaking. Never in our wildest dreams would we ever anticipate that an employee getting a couple of stitches, or just a prescription for eye drops, could potentially prevent us from obtaining work from our customers in the future. It is unfortunate that this is the world we work in today.  Having lost work time injuries, or just recordable injuries, can potentially exclude you from future work with many of your current customers.

The second “Management Pulse” survey provides insights that can help members identify how other EASA service centers are utilizing “Return to Work” programs and managing injuries at their facilities to help keep these rates as low as possible. The information provided below is based on data provided directly from EASA members.

Of the 150 EASA members who responded to the Return to Work Survey:

  • 52% reported that they had job descriptions developed for each position.
  • 83% said they provided light duty work for employees who are injured at work and cleared for light duty work by the physician.
  • 23% of the respondents currently have a written return to work procedure.
  • 31% have actually communicated the return to work program to their Workers’ Compensation medical provider.
  • 55% of the respondents currently accompany an injured employee to the medical provider.

The benefits of providing light duty work to employees who are injured at work have been well documented. Having an employee return to work at the earliest possible time is not only good for the company, but it has been proven to be the best course of action for the injured employee. Having a documented program, communicating the availability of light duty work to your medical provider, and accompanying injured employees are all methods to help you in managing the injuries and the associated injury rates at your facility.

For further information about Return to Work Programs and proper management of your injured employees, consult with your Workers’ Compensation program providers.  Networking with fellow EASA members often also provides valuable information.

Available Downloads

Management Pulse survey results: Sales compensation and strategy

Management Pulse survey results: Sales compensation and strategy

Mike Huber
American MTS

You may have heard the saying that goes: “In business, nothing happens until somebody sells something.” Just about every aspect of a company’s operations revolve around the sales process.

Many growing companies in our industry have someone, whether it’s the owner or others, out meeting prospective customers and regularly selling products and services. The most recent Management Pulse Survey on sales compensation and strategy looks at how some EASA members manage this role how these individuals are compensated.

Management Pulse Survey Results: Talent Acquisition & Retention

Management Pulse Survey Results: Talent Acquisition & Retention

Ryan Senter
Management Services Committee Member
Hibbs Electromechanical, Inc.

As we continue through 2020, talent acquisition and retention remain significant topics in a variety of industries. Based on the results from the recent Management Pulse Survey, 72 percent of respondents, who are fellow EASA members, stated talent acquisition is a significant issue for their companies.

Available Downloads

Management Pulse Survey: Employee Engagement Strategies Lead to Employee Satisfaction

Management Pulse Survey: Employee Engagement Strategies Lead to Employee Satisfaction

Tim Hebert
Management Services Committee Member 
A&W Electric, Inc.

Many research organizations study employee engagement, and they should! Employee engagement is one of the most effective ways to keep your team productive. Include them in solving daily problems and capitalizing on opportunities that present themselves in your business.

Gallup reported that approximately 70 percent of employees do not feel actively engaged in their jobs. That is a staggering number. Studies suggest this generally results from a lack of:

  • Communication from supervisors; 
  • Clear expectations or definition of success; 
  • Satisfaction from their work; 
  • Empathy from their management team.  

Whether true or not, that is what many people feel.

Available Downloads

Management Pulse: Talent Acquisition & Retention

Management Pulse: Talent Acquisition & Retention

Ryan Senter
Management Services Committee Member
Hibbs Electro-Mechanical, Inc.
Madisonville, Kentucky

No matter how you receive your business news, talent acquisition and retention remain a consistent topic across all professions. Record low unemployment may be cause to celebrate in some respects but can create a very challenging and competitive environment for new talent. Additionally, retirements both necessitate finding new team members and expose the exponentially widening skills and experience gap.

Our industry is no different and may even be at a more considerable disadvantage due to the specialized qualifications necessary for traditional electromechanical equipment repair. 

So, how are we going to solve the problem?

Available Downloads

Managing Short-Term Liquidity Needs During an Economic Downturn

Managing Short-Term Liquidity Needs During an Economic Downturn

Craig MacKay & Glenn Tofil
England & Company, LLC

Solid middle-market businesses are vulnerable to revenue surprises and market volatility as the impact of COVID-19 on the economy is currently demonstrating. While the long-term prospects of your business may not be materially impaired by temporary decreases in customer demand, delayed projects or supply chain disruptions, the earnings impact can potentially trigger a default under performance-linked financial covenants with a lender.

As part of this presentation, the speakers discuss: 

  • Steps business owners should take if the breach of a financial covenant is a possibility  
  • The range of how different lenders might work with borrowers that are in default
  • Actions that can be taken if a breach leads to the need to amend an existing credit facility, seek a new credit facility or lending relationship, or possibly raising additional third-party junior capital to shore up a company’s balance sheet

The presenters have helped numerous business owners obtain long-term funding to allow their companies to thrive and grow. In addition, England & Co. will be joined by representatives of leading debt capital providers to discuss how companies can best handle short-term liquidity challenges and prepare for a resumption of long-term growth.

Available Downloads

Managing Voltage Stress for VFD Applications on IEC Motors

Managing Voltage Stress for VFD Applications on IEC Motors

Matthew Conville, MBA, PE
EASA Technical Support Specialist

In today’s global economy, it is quite possible to get electric motors from all over the world. This gives us plenty of options to choose from when selecting an electric motor. Most electric motors that are 500 hp (373 kW) or less will conform to one of two basic manufacturing standards; NEMA or IEC. Both have specific clauses which define the voltage stress limits an induction machine can be subjected to in its application, which is powered by Variable Frequency Drives (VFDs)/converters. The intent of this article is to focus on IEC standards for managing voltage stress in VFD applications as it pertains to the motor’s windings. If more detail is needed on NEMA applications, please refer to NEMA MG-1 Part 31.

Available Downloads

Máquinas verticales con rodamientos de empuje de rodillos esféricos

Máquinas verticales con rodamientos de empuje de rodillos esféricos

Chuck Yung
Especialista Sénior de Soporte Técnico EASA

Un aspecto de nuestra industria de reparación que parece causar mucha confusión es la disposición de los rodamientos de los motores verticales. Existe una gran variedad de disposiciones de rodamientos de empuje y tendemos a intentar aplicar el mismo método para ajustar el juego axial en todos ellos. Por lo general, esta es una mala idea, por lo que este artículo analizará más de cerca específicamente aquellos motores equipados con un rodamiento de empuje de rodillos esféricos y ofrecerá consejos de reparación exclusivos para estos diseños.

Available Downloads

Marketing ANSI/EASA AR100 = TRUST

Marketing ANSI/EASA AR100 = TRUST

Jerry Gray
Sloan Electromechanical Service & Sales

Before getting underway with this marketing discussion, you may be asking:  Why should I even care about the Recommended Practice for the Repair of Rotating Electrical Apparatus (ANSI/EASA AR100-2015)? Actually, that’s a good question!  

The best place to start with answering this is to go to EASA’s website at easa.com and look up the “EASA Code of Business Practices”. Take a look at Item #3 that reads:  “A member will strive to adhere to all of the standards adopted by EASA.”  

If you’re a good EASA member and show pride in following the “EASA Code of Business Practices,” the “light switch” in your brain may have just switched on!  The ANSI/EASA AR100 is a STANDARD adopted by the Association. It’s a great feeling to know that by following ANSI/EASA AR100 in your service center processes, your staff has been doing the right thing all the time! Whew! You can see now that you know about and really do CARE about ANSI/EASA AR100!!

The next question
Now, here’s the next question:  WHY is there an ANSI/EASA AR100 standard? Part of the answer is given in the first sentence of the standard: “The purpose of this document is to establish recommended practices in each step of the rotating electrical apparatus rewinding and rebuilding processes.”

The other more serious consequential elements of the answer are to: 

  1. Establish TRUST with potential customers;
  2. Reinforce TRUST with previous customers;
  3. And, most importantly, giving TRUST to the service center staff as acknowledgement of their ongoing training and skills, and knowing the services that they are required to perform are recommended practices.  Following these recommended practices proves competence in attaining a quality result.

EASA members are in a highly technical business with potentially life altering consequences as a result of a member-rendered service. Whether it’s putting a flooded pump station rapidly back online for temporary service until a more permanent repair can be performed or getting a production line back into operation so those employees can earn a paycheck, a customer supervisor retains his employment by selecting a trusted EASA member. By being part of a response team to a country’s nuclear disaster, which was the case in Fukushima, Japan, EASA members are given the opportunity to prove TRUST. (Likewise, the EASA member’s failure to prove TRUST diminishes the EASA organization and every EASA member.)

Building on trust
This leads into one of the goals of marketing the standard, and that is sending the message of TRUST. The foundation for any positive relationship is TRUST. Regardless of any product or service being offered, the TRUST message must be sincere and emotionally transparent to create a sales opportunity. 

Educating the customer and service center staff on ANSI/EASA AR100, providing leadership by implementing the recommended practices and furnishing the required equipment create the building blocks of TRUST for everyone.

The presence of TRUST leads naturally into the other goal of marketing: to create a sales opportunity.  

Note that there is really no such thing as an “existing customer.” There is only a previous customer who has become a POTENTIAL customer. A customer only exists during a sales transaction. When a sales transaction is completed, what was a customer now becomes a potential customer. Thus the marketing process repeats, starting with TRUST, in an endless loop to create more sales opportunities.

With a lack of Trust comes an absence of sales opportunities which ceases business growth – leading to an almost certain business decline. This means that marketing becomes a vital part of the EASA member’s business operation and marketing ANSI/EASA AR100 is a critical component of the marketing effort. 

Market standard to build trust
Creating TRUST means marketing ANSI/EASA AR100. How would ANSI/EASA AR100 be marketed to build TRUST for the sales opportunity? This is the easy part:

  1. Have copies of the standard on your sales and service counters.
  2. When visiting a customer, show the standard and explain the processes.
  3. Explain to the customer where the standard can be downloaded on EASA’s website. Or better yet, leave a printed copy for your customer.
  4. The last marketing step is in the final service product being delivered to the customer. The result is a reliable, efficient motor that performs as designed and lasts as long as originally designed – or longer.  

By completing these steps in marketing ANSI/EASA AR100, the goal of TRUST is immensely easier, leading to a sales opportunity with a POTENTIAL customer. Then business gets better!!

Available Downloads

Marketing Tip: Claim Your Free Real Estate on Google!

Marketing Tip: Claim Your Free Real Estate on Google!

Kelley Fujino
Marketing + Industry Awareness Committee Member
Lubbock Electric Co.

Have you created your “Google My Business” profile?  It’s free advertising! Even if you haven’t, your company may already have a bare-bones profile created with public information. 

Google My Business (GMB) profiles appear to the right of search results in a separate box for direct company searches and in map results for general searches, such as “electric motor repair near me.”  

Do a Google search for your company name and city to see if your business has one. If you see a link that says “Own this business?” or “Claim this business,” it means that your business page is unclaimed. You can start the process of claiming it from that link. You can also go to google.com/business to either create or claim a business page. 

A Google account is required to create and maintain a GMB profile. Even if you have a personal Google account, consider creating a separate Google account for your business.  After verification, you can easily update the business information, upload attractive pictures, and post articles from your website or special offers.  What’s more, you can track how many calls and website visits your business receives directly from Google and uncover what search terms people used to find your business.

Marketing Tip: Test Your Brand Quarterly

Marketing Tip: Test Your Brand Quarterly

At least once a quarter, spend a few minutes investigating your company as if you were a new customer. Remember, all your sales and marketing efforts must be backed up when customers hit your door, phone or website; otherwise your efforts are wasted.

  • Visit your website with fresh eyes. Do all the links work? Are the phone number, address and hours of operation correct? Is it easy and clear to contact you?
  • Check your contact form (if your website has one). When a form is completed, do you know where it goes? Does your internal staff treat these leads with the importance they deserve?
  • Call your company’s main number and/or 800# from an unknown number. How is the experience? Does someone answer who is pleasant and ready to help?

Follow-up directly with a few new customers every quarter upon the completion of their first job. Have a quick list of questions to gauge their satisfaction level and willingness to repeat business.

Marketing: How to Come Up with New Content Ideas

Marketing: How to Come Up with New Content Ideas

Many EASA members have a website, post on social media or produce a company newsletter. Inevitably, you have an employee who is almost always in search of content. QuickSprout, an online digital marketing resource, suggests a few ways to make content generation a breeze.

  • Social media followers: Start with people who follow you on social media. Click on their profiles and see what they are posting about. 
  • Competitor websites: Take a look at your competitor’s blog. While you certainly don’t want to use their content word-for-word, there is nothing wrong with using their concepts for content generation.
  • Sign up for newsletters: Sign up for industry newsletters and most will be delivered directly to your inbox. They’ll keep you up-to-date with trending topics, news and events.
  • New products and technology: Writing content about a new service or product is always a good idea. First, you’ll be able to generate buzz for the release, which will ultimately drive sales. But the release also gives you something to write about.
  • Use data and analytics: Do you have an interesting take on the industry research EASA published in late June? Write about that.
  • Revisit previously published content: Your old content should not be forgotten. Use those topics for ideas too. Just re-work the headlines and write the article from a different updated angle.
  • Create topic lists in bunches: Create a long list of topics all at once. Spend a few hours researching subjects for new ideas. Give yourself enough topics for at least a month or two. When your mind is focused on the single task of generating topics, then it’s much easier to brainstorm.
  • Blog or social media comments: Always review and respond to the comments posted on your social media channels or your blog. These comments can be a great source of inspiration, and you can pull concepts from them to write about in the future. If people ask questions in the comments section, those questions could be used as titles for a new topic.
  • Conduct interviews: Ask your customers directly what type of content they would like to see. Conduct interviews and ask them about their buying habits. The responders may start feeding you new content ideas without even realizing it.
  • Google search suggestions: If you’ve got a general topic in mind, start searching for it on Google: https://www.google.com. In addition to the search suggestions that appear, you can also check out the related searches at the bottom of the page.
  • Recent events: When you’re watching the news or reading updates from an online source, think about how you can make certain topics relevant to your brand.
  • Product reviews: Think about recent products you’ve used related to your brand, your industry or your business. Review these topics in a video demonstration or in a blog post.
  • Topic generator platforms: If you’re stuck and can’t think of anything to research or write about, use online sources to help you generate topics. One is the HubSpot blog ideas generator (https://www.hubspot.com/blog-topic-generator). All you have to do is add some keywords and the tool will come up with a list of potential ideas.
  • Personal stories: Tell a story about something that happened to you or a customer. It could be a success story or it could be a story about a mistake you made. How did you learn from the experience?
  • YouTube videos: YouTube can be a great resource when you need to come up with new ideas. Treat it the same way as a Google search. As you start to type in a subject, you’ll see suggestions. When you watch a video, there will be related videos on the sidebar for you to consider as well.

Measuring a Bearing Journal

Measuring a Bearing Journal

This video explains how to measure the diameter of a bearing journal accurately to within five hundred-thousandths of an inch or one-thousandth of a millimeter. This critical step will determine if the shaft needs any repairs for proper bearing fitment.

Topics covered include:

  • Tools and supplies needed
  • How to validate micrometer accuracy
  • Minimum number of measurement locations
  • How to measure a bearing journal

Mechanical Reference Handbook

Mechanical Reference Handbook

Mechanical Reference HandbookDESCRIPTION
This 94-page handbook (3.5" x 6", 9cm x 15cm) contains carefully selected materials designed to assist repair firms in their everyday work. Just as important, your customers and potential customers can use this pocket handbook as a handy reference for mechanical data for motors and driven equipment. Buy this great resource as is OR custom brand your company logo and information on the cover to turn it into a great marketing piece for your salespeople!

BUY COPIES OF THIS HANDBOOK

TABLE OF CONTENTS

Alignment
Alignment Information
Suggested Alignment Tolerances
ANSI/ASA Alignment Quality

Balancing And Vibration
Single-Plane Versus Two-Plane Balancing
Vibration Tests
Unfiltered Housing Vibration Limits
FFT Vibration Analysis
Vibration Constants
Vibration Conversion Factors
Electric Motor Vibration Diagnostic Chart

Motor Application Forumlas
Output
Shear Stress
Speed–AC Machinery 
Affinity Laws–Centrifugal Applications

Conversion Factors, Equivalencies & Formulas
Conversion Factors
Temperature Conversion Chart
Common Fractions Of An Inch–Decimal & Metric Equivalents
Prefixes–Metric System
Formulas For Circles

Bearings
Nominal Dimensions For Radial Ball Bearings
Nominal Dimensions For Cylindrical Roller Bearings
Radial Ball Bearing Fit Tolerances
Cylindrical Roller Bearing Fit Tolerances
Lock Nuts And Lock Washers For Ball Bearings

Motor Bearing Lubrication
Lubricating Oil Viscosity Conversions
NLGI Grease Compatibility Chart
Grease Classifications
Grease Relubrication Intervals

Metals And Alloys
Properties Of Metals And Alloys
Weight Formulas For Steel
Thermal Linear Expansion

Bolts
ASTM And SAE Grade Markings For Steel Bolts And Screws
Precautions For Tightening Bolted Joints
Bolt Tightening Torque Values
Tap Drills And Clearance Drills For Machine Screws

Keys And Keyseats
NEMA Keyseat Dimensions–Foot-Mounted AC & DC Machines
IEC Shaft Extension, Key And Keyseat (Keyway) Dimensions
Square And Flat Stock Keys
Standard Keyseat Sizes
Metric Keys–Standard Sizes

Belts And Sheaves
Pulley Formulas For Calculating Diameters and Speeds
Belt Installation
Belt Tensioning
Belt Deflection Force And Elongation Ratio
Standard V-Belt Profiles And Dimensions
V-Belt Sheave Dimensions
V-Belt Sheave Dimensions For AC Motors With Rolling Bearings
Application Of V-Belt Sheave Dimensions To AC Motors With Rolling Bearings
Mounting Of Pulleys, Sheaves, Sprockets, And Gears On Motor Shafts
Minimum Pitch Diameter For Drives Other Than V-Belts

Welding, Brazing And Soldering
Recommended Copper Welding Cable Sizes
Types Of Weld Joints 
Brazing
Basic Joints For Brazing
Soldering
Melting Temperatures Of Tin-Lead-Antimony Alloys
Flux Requirements For Metals, Alloys And Coatings

Slings, Wire Rope, Shackles and eyebolts
Types Of Slings
Typical Sling Hitches
Wire Rope
Spreader Bars
Lifting Capacity
Forged Shackles
Eyebolt Strength

Common Signals For Crane

Available Downloads

Mejore la Satisfacción del Cliente: Siga los Procedimientos de Almacenamiento de Motores Eléctricos

Mejore la Satisfacción del Cliente: Siga los Procedimientos de Almacenamiento de Motores Eléctricos

Chuck Yung
Especialista de Sénior de Soporte Técnico de EASA

Una de las cosas más mundanas de las que debemos preocuparnos como reparadores es el almacenamiento de los motores y para muchos, almacenar motores grandes para clientes importantes representa ganancias. Para todos nosotros, ser conscientes de cómo nuestros clientes almacenan los motores que les reparamos es crítico desde el punto de vista de la satisfacción del cliente. Es probable que un motor mal almacenado sufra fallos en el devanado o en los rodamientos, y no queremos reclamos por garantía poco realistas sobre algo que está fuera de nuestro control.

Nuestras principales preocupaciones al almacenar motores, especialmente a largo plazo, son los devanados, los rodamientos y el pandeo del eje.

Available Downloads

Misunderstanding the expense structure

Misunderstanding the expense structure

Dr. Albert D. Bates
President, Profit Planning Group
Boulder, Colorado.

The sales challenges associated with the recession have caused most firms to take a serious look at their operating expenses. Obviously, most of the effort has focused on cutting ex­penses. While that is an important task, a more fundamental issue is determin­ing the nature of the firm’s expense structure. That is, deciding whether the organization should build a heavy fixed-expense structure or whether it should rely more on variable expenses. 

Examining the expense structure is not an academic issue. The ability to put in place an expense profile that reflects the firm’s strategic posture is essential to long-term success. It also has major impli­cations for the ability of the firm to withstand current and future economic challenges.

Available Downloads

Mitigando El Riesgo En Los Sistemas De Aislamiento

Mitigando El Riesgo En Los Sistemas De Aislamiento

Mike Howell
Especialista de Soporte Técnico de EASA

Diferentes normas relevantes incluyendo la IEC 60085 y la IEEE 1 definen de forma similar los materiales electro aislantes (EIM) y los sistemas de aislamiento eléctrico (EIS). Resumiendo, los EIM son materiales idóneos para separar las partes conductoras a diferentes voltajes y los EIS son estructuras aislantes que contienen uno o más de estos materiales.

Como en cualquier sistema, existe una interacción entre los materiales usados y los diseñadores de los sistemas de aislamiento cuidan todos los detalles para evitar que esta interacción produzca resultados indeseados. Por ejemplo, es posible que dos materiales (EIM) clasificados individualmente como clase H (180ºC) tengan vida térmica en un sistema (EIS) limitado a una clase térmica F (155ºC).

Available Downloads

Mitigating Risk with Insulation Systems

Mitigating Risk with Insulation Systems

Mike Howell
EASA Technical Support Specialist

Relevant standards including IEC 60085 and IEEE 1 have similar definitions for electrical insulating materials (EIM) and electrical insulation systems (EIS). To summarize, EIM are materials suitable for separating conducting parts at different voltages, and EIS are insulating structures containing one or more of these materials.

As with any system, there is an interaction between the materials used, and the insulation system developers take great care to ensure that this interaction does not lead to undesirable outcomes. For example, it is possible for two materials (EIM) classified individually at thermal class H (180°C) to have thermal endurance in a system (EIS) limited to thermal class F (155°C). Far worse outcomes could exist if material compatibility is an issue. At the service center level, our resources are generally insufficient for these types of insulation system development activities. For this reason, two approaches often seen are (1) relying on a third party (e.g., resin manufacturer) to provide a qualified insulation system bill of materials, or (2) applying commonly used materials based on their individual ratings. The first approach is strongly recommended, and the second approach can lead to disaster.

Available Downloads

Mito o Realidad: Conceptos Errados Comunes Sobre Motores Eléctricos

Mito o Realidad: Conceptos Errados Comunes Sobre Motores Eléctricos

Tom Bishop, P.E.
Especialista Sénior de Soporte Técnico de EASA

Un viejo dicho dice: “Si está en blanco y negro debe estar bien”. Ver algo por escrito lo hace más creíble que si se escucha verbalmente. Sin embargo, eso no significa que sea verdad. Siempre deberíamos buscar una justificación que soporte un testimonio, sea escrito o verbal.

Un dicho más reciente dice: “Si está en internet debe ser cierto”. Aplique el mismo concepto aquí. Busque una justificación antes de aceptar información obtenida por internet. Aquí tenemos una colección de algunos de los conceptos errados más comunes acerca de las características de desempeño de los motores eléctricos tipo jaula.

Available Downloads