Facebook Twitter LinkedIn YouTube Menu Search Arrow Right Arrow Left Arrow Down Arrow Up Home Arrow Next Arrow Previous RSS Icon Calendar Icon Warning Icon

Filter the results

  • Enter one or more words to find resources containing any of the words entered
  • Enter words or phrases between " " to find exact match

Webinar Recordings

Principles of Medium & Large AC Motors, 1st Edition - IEC

  • February 2020
  • Number of views: 56708
Book

This manual covers horizontal and vertical squirrel-cage induction motors in the 300 to 5,000 horsepower range, low- and medium-voltage. Most of the principles covered apply to other sizes as well. This manual focuses primarily on IEC motors and standards.

Rotor/Armature Core Test Form

  • September 2019
  • Number of views: 23471
Form/Worksheet

EASA’s Rotor/Armature Core Test Form provides a step-by-step procedure for calculating the number of turns and cable size required for a loop test.

Induction Motor Speed Control Basics

  • March 2019
  • Number of views: 9356
Webinar recording

Induction motors are most often applied to what are essentially constant speed drive applications. However, the use of induction motors in variable speed applications continues to grow, primarily due to technology advances in power electronics. This webinar will review speed control basics for induction machines.

Induction Motor Rotor Windings: Squirrel-Cage and Wound Rotor Basics for the Technician

  • January 2018
  • Number of views: 12049
Webinar recording

This presentation covers induction motor basics for squirrel-cage and wound rotor motors

Help with form wound rotor wave connections

  • September 2015
  • Number of views: 9613
Article

For those who work almost exclusively with lap or concentric wound three-phase stators, wave wound rotor connections can be a challenge. This is especially true if connection data gets lost or if an existing winding connection is damaged during a failure. In these cases, it is useful to have a practical method for laying out a valid connection diagram. 

Ayuda para las conexiones de rotores bobinados con devanados ondulados de pletina

  • September 2015
  • Number of views: 9143
Article

Para aquellos que trabajan casi exclusivamente con estatores trifásicos con devanados imbricados o concéntricos, las conexiones de los rotores bobinados con devanados ondulados pueden ser un reto. Esto es especialmente cierto, cuando los datos de conexión se pierden o cuando el fallo en el bobinado provoca daños en la conexión existente. 

Wound Rotor Repair Tips: Testing, Application and Failure Analysis

  • July 2013
  • Number of views: 6841
Convention presentation

Even though they comprise a small portion of electric motors in service, wound rotor motors are disproportionately represented in EASA’s tech support call volume. There are several misconceptions about how they work. This paper will describe how they are applied and explain several simple but critical tests for the repairer.

Trends & Solutions: Induction, Synchronous, DC and Wound Rotor Motors

  • July 2013
  • Number of views: 9084
Convention presentation

Is the induction motor the preferred answer in industrial drive applications? What is happening to the synchronous, DC and wound rotor motor (WRM) in those applications?

Wound rotor motor tips for failure analysis, repair and testing

  • November 2012
  • Number of views: 11086
Article

Wound rotor (WR) motors represent only a small fraction of all electric motors in service. In reviewing the EASA Technical Support call logs, one would conclude that there are many more wound rotor motors in service. Because many of us do not work on wound rotor motors often, it is understandable that not everyone has a clear understanding of how they differ from a squirrel cage motor. The purpose of this article is to dispel some misconceptions about how they work and to offer valuable tips for failure analysis, repair and testing. Other topics covered include: Secondary voltage Crane applications Testing tips, after assembly

How to properly test AC stator and wound rotor windings

  • October 2012
  • Number of views: 25204
Article

There is much discussion in the industry about how to properly electrically test AC stator and wound rotor windings. Topics include test voltage, procedure, frequency and when to perform the various tests. This article describes how the following standards address these questions:

  • NEMA MG 1-2011
  • (MG1) IEEE 43-2000
  • (IEEE 43) IEEE 62.2-2004
  • (IEEE 62.2) IEEE 522-2004
  • (IEEE 522) IEEE 1068-2009
  • (IEEE 1068) ANSI/EASA AR100-2010
  • (AR100) CSA C392-2011 (C392)

These standards are regularly reviewed and coordinated, so some of the information may not match the old yellowed reference taped to your toolbox lid. These updated references should replace anything dated previous to the dates indicated on the standard. AR100 Section 4.3.1 lists the recommended tests for stator and wound rotor windings. They are insulation resistance (IR), winding resistance, growler, phase balance, surge comparison, polarity and ball rotation tests. This article covers the IR, winding resistance and surge tests. Noticeably absent from this list is the ever popular high potential (hi-pot) test. Topics covered also include: IR (or megohm) test Polarization index test Winding resistance test Surge comparison test Hi-pot test.