Open Search

Mechanical repairs play a key role in motor repair and reliability: EASA AR100 details steps to take to clean, repair, and test equipment

Plant Engineering
Publication date: 
November 2015
Tom Bishop, P.E., EASA Senior Technical Support Specialist

In a previous article in Plant Engineering ("A systematic approach to AC motor repair," Plant Engineering, April 2015), EASA highlighted the good practices for electrical repair found in ANSI/EASA Standard AR100 Recommended Practice for the Repair of Rotating Electrical Apparatus, and the significant impact they can have on motor efficiency and reliability. But that was only part of the story, because mechanical repairs—and even documentation, cleaning, and inspection—can also markedly affect motor reliability and efficiency.

This latest article focuses on the mechanical and "other" repair good practices prescribed by AR100 that are mandatory in EASA's motor-repair accreditation program, including lubrication, bearings, and repair of frames, shafts, and bearing fits.

Items discussed include:

  • Identification and labeling
  • Identification of cause of failure
  • Cleaning and inspection
  • Cooling system check
  • Exterior finish
  • Packaging and transportation
  • Mechanical repairs including items such as shafts, bearings, lubrication, frames, etc.
  • Mechanical tests and instrument calibration