Mike Howell
Especialista de Soporte Técnico de EASA
Como forma de diagnóstico y cuando sea posible, una buena práctica consiste en probar en vacío un motor de inducción que entra al centro de servicios. Esta misma prueba también se debe efectuar después del ensamblaje y la norma ANSI/ EASA AR100-2020 establece que "las pruebas en vacío se deben realizar a la tensión y frecuencia nominales". En este artículo, discutiremos algunas de las razones por las que esto es importante y algunos factores a considerar cuando no se puede cumplir con ambos requisitos.
Prueba Dinámica/en Vacío
Cuando un motor de inducción funciona desacoplado a tensión y frecuencia nominales, la velocidad del rotor debería estar muy próxima a la velocidad síncrona, que es proporcional a la frecuencia. Por lo general, al medir la velocidad del rotor esta estará dentro de 1 rpm de la velocidad síncrona. Además, el campo magnético en el motor es proporcional al voltaje aplicado e inversamente proporcional a la frecuencia de red y a menudo esta relación se denomina simplemente voltios por hercio (V/Hz). La corriente en vacío es predominantemente la corriente de magnetización y se deben evaluar los voltios por hercio nominales. La Figura 1 muestra los valores típicos de la corriente en vacío (NLA) en porcentaje de la corriente nominal (FLA) vs. la potencia nominal en motores de 2, 4 y 6 polos. En general, la corriente en vacío en porcentaje de la corriente nominal aumentará a medida que aumente el número de polos y disminuirá a medida que aumente la potencia de salida.
Si no se dispone de un variador adecuado, los motores diseñados para trabajar con inversores se deben operar a los voltios por hercio nominales con las siguientes excepciones: No se debe exceder el voltaje nominal y la velocidad máxima indicada en la placa de datos. Por ejemplo, si se usa un tablero de prueba de 60 Hz, un motor clasificado para 400 V 20 Hz (20 V/Hz) sin una velocidad máxima segura publicada tendría que operarse a 1200 V 60 Hz para alcanzar los voltios por hercio nominales; superando por mucho la tensión nominal y la velocidad base (3x nominal).
Si un motor funciona por debajo de la frecuencia de línea máxima (velocidad de rotación), la resonancia y las velocidades críticas del eje que podrían ocurrir a frecuencias más altas no serán evidentes. Por esta razón, efectuar pruebas de vibración en motores por debajo de la velocidad máxima no garantiza el cumplimiento de las tolerancias cuando el motor funciona a la frecuencia de línea y velocidad máxima.
Si un motor funciona por debajo de los voltios por hercio nominales, los problemas asociados con el ruido electromagnético y la vibración podrían enmascararse. Las ondas de fuerza que causan la vibración electromagnética son casi proporcionales al cuadrado de los voltios por hercio. Por ejemplo, si una máquina de 400 V 80 Hz (5,0 V/Hz) funciona a 230 V 60 Hz (3,8 V/Hz), cualquier vibración electromagnética se reduciría aproximadamente al 60 % de su valor normal.
Otro problema con el funcionamiento por debajo de los voltios por hercio nominales es que la corriente en vacío se reducirá y, aunque la relación será aproximadamente lineal en algún rango, la reducción severa dará como resultado un deslizamiento notable. La relación entre los voltios por hercio y la corriente será menos predecible y difícil de evaluar. Además, si hay otros problemas que habrían sido evidenciados al probar con los voltios por hercio nominales (por ejemplo, error en el devanado, conexión incorrecta), es posible que no sean fáciles de detectar.
Operar por arriba del 10% de los voltios por hercio nominales excede los límites permitidos de la mayoría de las máquinas. Dado que la relación entre los voltios por hercio y la corriente de magnetización se vuelve no lineal a medida que los núcleos del estator y del rotor se acercan a la saturación magnética, no es factible evaluar la corriente en vacío. Por ejemplo, un motor de 200 V 100 Hz (2,0 V/Hz) que funciona a 208 V 60 Hz (3,5 V/Hz) podría acercarse más a la corriente de rotor bloqueado que a la corriente de vacío normal. Cuando se comete este tipo de error en la prueba, el devanado del estator puede dañarse muy rápidamente.
Los centros de servicio que reparan regularmente motores accionados con inversores deben considerar invertir en equipos con capacidad de prueba a voltaje y frecuencia variables. Para obtener información adicional sobre la prueba de motores accionados con inversores y adquirir un VFD para su centro de servicio, los siguientes artículos publicados en la revista Currents deberían ser útiles y están disponibles en la biblioteca de recursos de easa.com:
- “Testing Methods for Induction Motors for Use in VFD-Powered Applications” de noviembre del 2014
- “Selección y uso de un variador de frecuencia electrónico para hacer pruebas en un centro de servicios” de enero del 2016.
La prueba de balanceo de fases no está estandarizada y tiene muchos nombres que incluyen, pero no se limitan a: Prueba de impedancia de estator abierto, prueba de estator bobinado, prueba del balín y prueba con rotor falso. Muchos centros de servicio utilizan esta prueba de alguna forma para solucionar problemas y como control de calidad antes de barnizar/resinar el devanado. El enfoque típico es aplicar un voltaje trifásico balanceado en los terminales del devanado del estator con el rotor afuera y luego evaluar el balanceo y la magnitud de las corrientes resultantes. Los criterios de aceptación difieren, pero es razonable que el desequilibrio de corriente esté dentro del 10 % de la corriente media. Además, con la impedancia más baja que resulta al tener el rotor fuera del estator, se debería medir la corriente nominal al aplicar entre el 12 y el 20 % de los voltios nominales (voltios por hercio). Por ejemplo, si un motor tiene una potencia nominal de 460 V 60 Hz (7,7 V/Hz), normalmente se obtendría una corriente nominal si se aplican entre 55 V y 90 V a 60 Hz. Si los datos de placa son 460 V 200 Hz (2,3 V/Hz), se esperaría la corriente nominal a 60/200 = 30 % de ese rango o a 17 V y 27 V, si se prueba a 60 Hz.
DISPONIBLE EN INGLÉS
Related Resources
-
Selection and use of a VFD for service center testing
Monday, January 4, 2016With the growing popularity of variable frequency drives (VFDs), it is likely almost every EASA service center has repaired motors powered by one in a customer’s installation. For these motors, it is best that after repair they are tested using a VFD, typically at no-load. This will provide operation mimicking the actual customer application, at varying speeds, and will help ensure proper mechanical operation throughout the speed range. This will include detecting vibration problems, identifying any resonant speeds within the operating range, and more. Also, if the motor is used above utility line frequency (i.e., 50 Hz or 60 Hz), it should be operated up to top speed for vibration measurement and a good break-in of the bearings.
Topics covered include:
- Selection challenges
- Voltage, power rating and frequency
- New or used VFDs for testing?
- Operating parameters
-
Testing methods for induction motors for use in VFD-powered applications
Tuesday, November 4, 2014No-load testing of repaired motors is common in most if not all repair service centers. ANSI/EASA AR100-2010 Recommended Practice specifies, “for AC motors, no-load running tests should be made at rated voltage and rated frequency.” For sine-wave powered motors, this statement is straightforward. For motors used on variable frequency drives (VFDs), there are a number of possibilities service centers may employ with the motor supplied by line (utility) power, and in some cases the tests may be less than ideal.
ANSI/EASA AR100
More information on this topic can be found in ANSI/EASA AR100- Section 3: Rewinding
- Section 4: Testing
EASA Technical Manual
More information on this topic can be found in EASA's Technical Manual- Section 7: Electrical Testing
Print