Facebook Twitter LinkedIn YouTube Menu Search Arrow Right Arrow Left Arrow Down Arrow Up Home Arrow Next Arrow Previous RSS Icon Calendar Icon Warning Icon

How to schedule

To schedule private education for your group, contact:

Dale Shuter, CMP
Meetings & Expositions Manager

+1 314 993 2220, ext. 3335
dshuter@easa.com

1 hour of training

$300 for EASA Chapters/Regions
$400 for member companies
$800 for non-members

How a webinar works

All EASA private webinars are live events in which the audio and video are streamed to your computer over the Internet. Prior to the program, you will receive a web link to join the meeting. 

The presentation portion of the webinar will last about 45 minutes, followed by about 15 minutes of questions and answers.

Requirements

  • Internet connection
  • Computer with audio input (microphone) and audio output (speakers) appropriate for your size group
  • TV or projector/screen

Zoom logo

The Zoom webinar service EASA uses will ask to install a small plugin. Your computer must be configured to allow this in order to have full functionality. Please check with your IT department or company's security policy prior to scheduling a private webinar.

Private Webinars

EASA's private webinars are an inexpensive way to bring an EASA engineer into your service center, place of business or group meeting without incurring travel expenses or lost production time.

AC Motor Assembly and Testing

AC Motor Assembly and Testing

This webinar recording focuses on:

  • Motor assembly issues
  • Electrical and mechanical inspection
  • Static and run testing
  • AC motors with ball, roller and sleeve bearings

Target audience: This webinar recording is most useful for service center mechanics, supervisors and engineers. The content will also be beneficial for machinists, managers and owners.

Adjusting End Play on Vertical Pump Motors

Adjusting End Play on Vertical Pump Motors

This video walks through the steps to adjust and set end play on a typical vertical hollow shaft pump motor. Proper end play adjustment is important to keep the lower bearing from supporting the weight of the rotor and to allow for thermal growth within the motor.

The motor in this video has a thrust bearing in the top and a standard ball-type guide bearing in the bottom, which is typical of vertical pump motors. There are other bearing arrangements with somewhat different procedures for setting end play, but here we’ll be working with the most common arrangement and procedure. There are variations of this process, and some vertical pump motor bearing arrangements require special procedures, especially those with springs mounted under a spherical roller thrust bearing.

Topics covered include:

  • Tools and supplies needed
  • Basic principle of end play adjustment
  • How to adjust end play
  • How to measure and verify proper end play

Ajuste de Los Cojinetes de Deslizamiento

Ajuste de Los Cojinetes de Deslizamiento

Chuck Yung
Especialista Sénior de Soporte Técnico de EASA

Cuando se rebabitan o se reemplazan cojinetes de deslizamiento, un paso importante durante el montaje consiste en verificar el contacto entre el cojinete y el muñón del eje que monta sobre el. El uso de cojinetes de deslizamiento auto alineables (también denominados esféricos o de ajuste esférico) hace que este paso sea casi innecesario. Aun así, los cojinetes de deslizamiento cilíndricos se deben inspeccionar para verificar que haya suficiente área de contacto.

Los cojinetes de deslizamiento, también conocidos como cojinetes de babbitt, de metal blanco o cojinetes lisos, han sido utilizados por más de 150 años. Para una explicación detallada sobre el diseño y funcionamiento de los cojinetes de deslizamiento solicite a EASA el documento de la convención del 2007: “Sleeve Bearing Repair Tips,” o el libro Mechanical Repair Fundamentals of Electric Motors, 2nd Edition.

Este es un artículo específico para verificar y corregir el patrón de desgaste al momento de instalar cojinetes nuevos en un motor eléctrico. Ajustar cojinetes no es difícil, solo se requiere algún conocimiento básico, Un parte interesante de la historia es el kit de herramientas suministrado con el antiguo automóvil Ford -Modelo A, que incluía un cuchillo para babbitt para rascar los cojinetes del cigüeñal. Imagine desmontar el motor de su auto en el camino, para retirar y ajustar los cojinetes de babbitt.

Available Downloads

Almacenamiento a largo plazo: Algunos puntos a tener en cuenta

Almacenamiento a largo plazo: Algunos puntos a tener en cuenta

Carick “Joe” Howard
Red Stick Armature Works, Inc.

Es bien conocido por aquellos que trabajan con el almacenamiento de motores eléctricos que las filosofías y procedimientos de mantenimiento varían. La revisión minuciosa de la información de EASA y siete fabricantes de motores diferentes sobre el almacenamiento de motores reveló algunas diferencias y similitudes interesantes en la información disponible en cada una de las fuentes consultadas.

Varias fuentes comparten elementos comunes como el ambiente, la protección contra humedad, el mantenimiento de los rodamientos y la resistencia de aislamiento. Aquí, la finalidad de nuestro debate es describir algunas de las diferencias y ojalá dar a conocer algunos puntos a tener en cuenta cuando se crea un procedimiento de almacenamiento a largo plazo para los usuarios finales.

Available Downloads

Angular Contact Bearings: Types, Classifications and Applications

Angular Contact Bearings: Types, Classifications and Applications

Toshiba International Corp.Presented by Gene Vogel
EASA Pump & Vibration Specialist

This webinar recording reviews angular contact bearings by type, classification and illustrates some of the applications where this knowledge will be useful. Most service center mechanics have a basic knowledge of bearing types and sizes. But angular contact bearings are less common than the standard radial ball bearings. Therefore, it is easy to miss important characteristics that impact performance. Topics include:

  • Types of bearings
  • Internal fits
  • Bearing identification by numbering system
  • Load ranges and applications

This recording will be useful for mechanics, shop supervisors and engineering staff.

Available Downloads

Axial Thrust in Rotodynamic (Centrifugal) Pumps

Axial Thrust in Rotodynamic (Centrifugal) Pumps

ABB logoGene Vogel
EASA Pump & Vibration Specialist

When repairing centrifugal and axial flow pumps, axial thrust is a concern. An understanding of the causes and the mitigating provisions of various pump designs will help repair technicians to ensure those provisions work properly. Various impeller designs, end suction and vertical turbine pumps will be a primary focus. 

Primary topics are: 

  • Factors affecting the amount of axial thrust developed by an impeller 
  • Review of some common mitigation designs 
  • What repair technicians need to look for on various pump designs 

The mechanical pump components can be repaired without understanding the hydraulics of how a pump works. But it’s easy to miss important features that can affect pump performance and reliability.  

This presentation will be helpful for pump repair technicians and supervisor and engineers associated with pump repair.

Available Downloads

Axial Thrusting Causes and Corrections (Motors)

Axial Thrusting Causes and Corrections (Motors)

This presentation reviews the causes of axial thrust loading on bearings in motors and determine appropriate corrective actions. 

  • Vertical mounting
    • Vertical turbine pump
    • Sheave
    • Fans
  • External thrust loads
    • Fans
    • Misalignment
  • Internal thrust loads
    • Bearing journal shoulder to shoulder
    • Bearing seat
    • Bearing caps
    • Wavy washer
    • Bearing housing taper
    • Thermal expansion
  • Dissect a bearing

 Target audience: This presentation would benefit engineers and mechanics looking for the root cause of bearing failures.

Babbitt Bearings

Babbitt Bearings

This presentation addresses:

  • Theory and design of babbitt bearings
  • Fitting / scraping of babbitt bearings
  • Speed limitations
  • Care and handling
  • Oil recommendations and considerations
  • Solutions and common causes of oil leaks

Target audience: This presentation will benefit supervisors, managers, sales personnel, machinists and mechanics.

Ball Bearing Tips

Ball Bearing Tips

Dale Hamil
Technical Education Committee Member
Illinois Electric Works

Extending bearing life is the subject of hundreds of articles. Most have to do with lubrication do’s and don’ts, mounting issues, improper handling and contamination. This article is not intended to supplant any of those articles. My intent here is to provide some common sense guidance and provide links to resources that can help.

Available Downloads

Basic electric motor bearing types, loads and applications

Basic electric motor bearing types, loads and applications

Cyndi Nyberg
Former EASA Technical Support Specialist

There are two main types of load that act on the bearings of a motor – radial and axial.

  • Radial – A radial load is defined as a load that is applied perpendicular to the shaft. An example of a radial load would be an overhung load, such as with a sheave.
  • Axial – An axial load, also referred to as thrust, is a load that acts parallel to the shaft on which the bearing is mounted. Just the rotor weight of a vertically mounted motor will cause a downward axial load on the bearing.

The type and magnitude of the load will determine what type of bearing should be used in the application. If the wrong type of bearing is used, it could lead to a motor failure in a short period of time.

Available Downloads

Basic Mechanical Repair Report

Basic Mechanical Repair Report

Electric motor repair report form to collect basic motor, bearing, shaft, coupling information.

EASA Mechanical Repair Report

Available Downloads

Bearing Analysis and Failure Modes

Bearing Analysis and Failure Modes

This presentation identifies and defines these failure modes:

  • True and false brinelling
  • Spalling
  • Fluting (bearing current)
  • Cage damage
  • Fretting
  • Loss of fits
  • Lubrication problems
  • Shields and seals
  • Skidding
  • Preload
  • Internal clearance
  • Load zone and ball track
  • Key indicators: temperature, noise and vibration.

Target audience: The presentation is most useful for service center and field technicians, service center managers, and engineers desiring to analyze bearing failures to prevent future failures.

Bearing basics: Purpose, design features of common elements

Bearing basics: Purpose, design features of common elements

Jim Bryan
EASA Technical Support Specialist (retired)

Rolling-element bearing construction has become a very precise and exacting process. Studies have shown that more than one-half of motors that come to service centers are because of worn out or failed bearings. This is understandable since this component is subject to wear and sometimes abuse. Bearing manufacturers are called upon to improve the quality and reliability of their product to increase the time in service before it becomes necessary to replace the bearings. Proper application and maintenance of the bearing is also a key to improved reliability. We will discuss in this article some of the components used to better understand what applications can be accommodated.

Available Downloads

Boring and sleeving bearing housings in a vertical milling machine

Boring and sleeving bearing housings in a vertical milling machine

Robert Giesen 
B & B Electric Motor Co. 
Wichita, Kansas 
Technical Education Committee Member 

Editor's Note: The procedures outlined in this article exclude explosion proof motor end bracket rebuilding.  

Many motor service centers bore and sleeve end brackets (end bells) in machine lathes. When using a lathe you need one large enough to swing the outside diameter of the end bracket and the large mass is hard to indicate true. Many times it is difficult to clamp onto the lathe chuck or faceplate. 

When rotating a large mass there is always a chance of the part coming loose and causing damage to the end bracket or injury to the machine opera­tor. We have bored and sleeved end brackets for more than 25 years in a vertical milling machine. We find the mill is a more useful machine; it is faster and more accurate to indicate in and set up. 

The boring of the diameters are true and concentric and it is much safer to rotate a cutting tool and not the part. Following is a step-by-step procedure to bore and sleeve end brackets in a verti­cal milling machine. 

Available Downloads

Cantidad y frecuencia de lubricación de los rodamientos de motores eléctricos

Cantidad y frecuencia de lubricación de los rodamientos de motores eléctricos

Tom Bishop
EASA Senior Technical Support Specialist

Las consideraciones para la cantidad y la frecuencia de lubricación de los rodamientos de motores eléctricos( y generadores)incluyen lo siguiente:

  • ¿El lubricante es aceite o grasa?
  • ¿El tipo de rodamiento es un cojinete de deslizamiento o un rodamiento de bolas o rodillos?
  • Si es un rodamiento de bolas ¿Tiene sellos, obturaciones o es abierto? En este artículo trataremos todo lo anterior dividiéndolo en las siguientes categorías:
  • Cantidad de grasa y frecuencia de lubricación para rodamientos de bolas y rodillos (rodamientos de elementos rodantes).
  • Frecuencia de lubricación y nivel de aceite (relacionado con la can- tidad) para rodamientos de bolas y rodillos.
  • Frecuencia de lubricación y nivel de aceite (relacionado con la cantidad) para cojinetes de deslizamiento.

Dado que la lubricación con grasa de cojinetes de deslizamiento es muy rara, este tema no se incluye en este artículo. Además, ya que los rodamientos sellados no se pueden relubricar, este tema tampoco está incluido.

Available Downloads

Características y propiedades de prueba de grasas y aceites

Características y propiedades de prueba de grasas y aceites

Tom Bishop, PE
Especialista Sénior de Soporte Técnico de EASA

La lubricación es requerida para reducir la fricción entre los elementos rodantes y las partes estáticas de los rodamientos. Al hacer esto, el lubricante también ayuda a prevenir incrementos de temperatura excesivos y a disipar parte del calor generado. En este artículo discutiremos algunas de las características y propiedades clave de los aceites y grasas lubricantes.

Available Downloads

Characteristics and Test Properties of Greases and Oils

Characteristics and Test Properties of Greases and Oils

Tom Bishop, PE
EASA Senior Technical Support Specialist

Lubrication is needed to reduce friction between the rolling elements and stationary parts of a bearing. By reducing bearing friction, lubricants also help prevent undue temperature rise and dissipate some of the heat that is generated. This article describes some of the key characteristics and properties of lubricating greases and oils.

Available Downloads

Common recommendations for stored motors

Common recommendations for stored motors

Chuck Yung
EASA Senior Technical Support Specialist

When an electric motor is expected to be stored for an appreciable time before it is placed into service, certain steps should be taken to ensure that it will be suitable for operation when it is needed. The practical limitation we need to recognize is that much of what we do when putting a motor into long-term storage has to be undone when the same motor is moved into operation. This article addresses common recommendations for stored motors.

Available Downloads

Como ocurre el empuje hacia arriba en las bombas de turbina verticales y disposiciones para controlarlo

Como ocurre el empuje hacia arriba en las bombas de turbina verticales y disposiciones para controlarlo

Gene Vogel
Especialista de Bombas y Vibraciones de EASA

Las bombas de turbina verticales (VTP) son accionadas por motores verticales provistos con grandes rodamientos de empuje que soportan el peso del rotor del motor, el rotor de la bomba y el empuje dinámico hacia abajo, producido por los impulsores cuando levantan el líquido. El peso del rotor del motor y del rotor de la bomba se determinan fácilmente a partir de datos de ingeniería simples.  El cálculo del empuje producido por los impulsores cuando interactúan con el líquido en movimiento es mucho más difícil y no siempre el empuje es generado hacia abajo.

Durante ciertas etapas de la operación de la bomba, el flujo del líquido a través de los impulsores puede generar un empuje hacia arriba que puede elevar el conjunto rotativo de la bomba. La fuerza ascendente resultante puede causar estragos en los rodamientos de empuje del motor que posiblemente solo están diseñados para manejar el empuje hacia abajo.

En este artículo revisemos brevemente cómo se produce el empuje hacia arriba en las bombas y las disposiciones en los motores VTP diseñados para controlarlo.

Available Downloads

Converting motors from horizontal to vertical mount

Converting motors from horizontal to vertical mount

Tom Bishop, P.E.
EASA Senior Technical Support Specialist

Occasionally an end user wants to take a motor designed for horizontal mounting and use it in a vertical position. In this article, we will address some of the key mechanical factors that should be considered when applying a horizontal ball bearing motor in a vertical mounting position. Figure 1 illustrates a horizontal motor in a vertical shaft down position.

These key factors include:

  • Axial thrust load capacity of bearing supporting rotor weight
  • Rotor weight
  • Weight of output shaft attachments
  • Axial thrust from direct connected driven equipment
  • Bearing lubrication paths
  • Bearing lubricant retention
  • Shaft up or shaft down orientation
  • Ingress protection
  • Locking axial thrust bearing

Available Downloads

Convirtiendo motores de montaje horizontal a vertical

Convirtiendo motores de montaje horizontal a vertical

Tom Bishop, P.E.
EASA Senior Technical Support Specialist

De vez en cuando un usuario final quiere utilizar un motor diseñado para montaje horizontal en posición vertical. En este artículo, trataremos algunos factores mecánicos clave que deben ser considerados cuando se utiliza un motor horizontal con rodamientos de bolas en una aplicación en la que trabaja en montaje vertical. La Figura 1 ilustra un motor horizontal en posición vertical con el eje hacia abajo.

Los factores clave incluyen:

  • Capacidad de carga axial del rodamiento que soporta el peso del rotor.
  • Peso del rotor
  • Peso de los elementos acoplados al eje de salida
  • Empuje axial de los equipos de impulsión acoplados directamente
  • Trayectorias de lubricación de los rodamientos
  • Retención del lubricante de los rodamientos
  • Orientación del eje: Hacia abajo o hacia arriba
  • Protección contra ingreso
  • Fijación axial del rodamiento de empuje

Available Downloads

Demagnetizing motor shafts to prevent bearing failures

Demagnetizing motor shafts to prevent bearing failures

Cyndi Nyberg 
Former EASA Technical Support Specialist

There are a number of ways that the shaft of an electric motor can become magnetized in service. The most likely culprit is electric current through the motor and shaft, either from internal dissymmetry, welding or from a variable frequency drive. It can also be caused by electrical faults in the system, or even a lightning strike. 

We of course know that shaft voltages and the associated currents can cause bearings to fail. A typical ball bearing failure from shaft currents is shown in Figure 1. when a shaft is magnetized, it can further lead to bearing failures, unless something is done to elimi­nate the residual magnetism. The first reason for bearing failures is that the residual magnetism can cause shaft currents, which can quickly lead to bearing failures. But in addition, a magnetized shaft will attract bits of metal to the bearings. This reduces bearing life because it damages the bearing surfaces. 

The magnetism in the shaft may be strong enough that a screwdriver that sticks to the shaft. In fact, this is the most simple test to check for a magnetized shaft. 

Electric Motor Bearing Lubrication

Electric Motor Bearing Lubrication

Megger Baker InstrumentsTom Bishop, P.E.
EASA Senior Technical Support Specialist

This webinar recording reviews electric motor bearing grease and oil lubrication frequency and quantity, as well as procedures – and the steps to be sure to get all of this right. 

  • Grease and oil lubrication frequency and quantities for ball and roller bearings
  • Grease and oil lubrication procedures for ball and roller bearings
  • Oil lubrication frequency and quantities for sleeve bearings
  • Oil lubrication procedures for sleeve bearings

This recording is intended for mechanical technicians, field service technicians, shop supervisors and engineering staff.

Available Downloads

Electric motor bearing lubrication frequency and quantity

Electric motor bearing lubrication frequency and quantity

By Tom Bishop, P.E.
EASA Senior Technical Support Specialist

Considerations for lubrication frequency and quantity for electric motors (and generators) include the following:

  • Is the lubricant grease or oil?
  • Is the bearing type sleeve, ball or roller?
  • If it is a ball bearing, is the enclosure open, shielded or sealed?

In this article we will address the above by breaking them down into the following categories:

  • Grease lubrication frequency and quantity for ball and roller (rolling element) bearings.
  • Oil lubrication frequency and level (relates to quantity) for ball and roller bearings.
  • Oil lubrication frequency and level (relates to quantity) for sleeve bearings.

Available Downloads

Electric Motor Noise: How to Identify the Cause and Implement a Solution

Electric Motor Noise: How to Identify the Cause and Implement a Solution

A methodical approach can narrow down which of the primary sources is to blame: magnetic, mechanical or windage noise

Tom Bishop, P.E.
EASA Senior Technical Support Specialist

Determining the source of noise in an electric motor is often more challenging than correcting it. A methodical investigative approach, however, can narrow the possibilities and make it easier to resolve the issue—with one caveat. If the noise is due to something in the motor design (e.g., a manufacturing defect or anomaly), a solution may be impossible or impractical. With that in mind, let’s review the primary sources of noise in electric motors—magnetic, mechanical, and windage—as well as their causes and ways to reduce or eliminate them.

Areas examined in this article include:

  • Magnetic noise
    • Slip noise
    • Skewing
    • Unequal air gap
  • Mechanical noise
    • Loose stator core
    • Bearings
    • Airborne noise
  • Windage noise

READ THE FULL ARTICLE

Evaluating Noise in Electric Motors

Evaluating Noise in Electric Motors

Nidec Motor Corp.Tom Bishop, P.E.
EASA Senior Technical Support Specialist

Determining the source of noise in a motor is often much more challenging than correcting it. However, a methodical approach to investigating the noise can narrow down the possible causes and therefore make it easier to resolve the noise issue. In this session we will address the causes and characteristics of the primary sources of noise in AC motors. Specific topics to be addressed:  

  • Magnetic noise (aka “electromagnetic noise” or “electrical noise”) 
  • Mechanical noise 
  • Windage noise 
  • Guidance for reducing or eliminating the intensity of these noise sources

This webinar recording is intended for mechanics, supervisors and testing technicians.

Available Downloads

External mechanical tolerances for electric motors and generators

External mechanical tolerances for electric motors and generators

Tom Bishop, P.E.
EASA Senior Technical Support Specialist

Service centers routinely check the shaft extension runout of motors and generators. When there are issues associated with them, or when applicable, the coplanarity of the mounting feet and the amount of end foat of horizontal sleeve bearing motors and generators are checked. A common point about all three of these dimensions is that they are checked with the machine assembled; that is, no disassembly is required. There are many other mechanical tolerances associated with motors and generators, such as bearing fits. However, the focus of this article will be the three tolerances just mentioned. Rather than referring to both electric motors and generators, for brevity the term “machine” will be used.

Topics covered include:

  • Shaft extension runout tolerance
  • Coplanarity of mounting feet tolerance
  • End float

Available Downloads

Fallos en los Rodamientos de Elementos Rodantes de un Motor

Fallos en los Rodamientos de Elementos Rodantes de un Motor

Austin Bonnett
Austin Bonnett Engineering LLC

La finalidad de este artículo es proporcionar fundamentos suficientes sobre los rodamientos para que los responsables por la aplicación, operación, mantenimiento y reparación de los motores eléctricos puedan tomar las medidas necesarias para minimizar los fallos prematuros y mejorar la posibilidad de que de los rodamientos duren hasta el “final de la vida útil”, que normalmente se denomina L10.

Available Downloads

Fitting Sleeve Bearings

Fitting Sleeve Bearings

Chuck Yung
EASA Senior Technical Support Specialist

When sleeve bearings are rebabbitted or replaced, an important step during assembly is to check the contact between the sleeve bearing and the journal which rides in it. The use of self-aligning sleeve bearings (also called spherical or ball fit) renders this step almost unnecessary. Still, cylindrical sleeve bearings should be inspected to make sure the contact area is sufficient.   

Sleeve bearings, also known as babbitt bearings, plain bearings or white metal bearings, have been in use for over 150 years. For a detailed explanation of sleeve bearing design and operation, request the EASA 2007 Convention paper, “Sleeve Bearing Repair Tips,” or see Mechanical Repair Fundamentals of Electric Motors, 2nd Edition.  

This article is specific to checking and correcting the wear pattern when installing a new sleeve bearing in an electric motor. Fitting a sleeve bearing is not difficult; it just requires some basic knowledge. An interesting bit of history: the toolkit provided with the old Model A Ford automobile included a babbitt knife for scraping crankshaft bearings. Imagine dismantling your engine alongside the road to remove and fit the babbitt bearings.

Available Downloads

Follow these procedures when checking endplay in a ball bearing machine

Follow these procedures when checking endplay in a ball bearing machine

Chuck Yung
EASA Senior Technical Support Specialist

We rebuilt a 75 HP electric motor recently. It ran fine in the service center, but the customer reported high bearing temperatures shortly after installing the motor.  The bearings failed after only a few hours at full load. 

The first response for most of us is to suspect an alignment problem.  But there is another possibility that should be considered.  An electric motor must have room for thermal expansion of the shaft, or bearing life will be severely reduced.

The endplay of a ball bearing motor plays an important role in bearing life. Because the frame dissipates heat generated in the rotor and windings, the rotor/shaft assembly is considerably hotter than the stator frame.  Thermal expansion of the shaft exceeds that of the frame. To compensate, allowance must be made for the shaft to “grow” axially.  Failure to do so will result in preloading of both bearings, with rapid failure of the bearing with the lower load-carrying capacity. That usually is the smaller ODE bearing.

For a carbon steel shaft, the length increases at the rate of  0.0000067” per inch of shaft length per degree (F) of temperature change.  For a 30” long shaft with an 80°F increase in temperature: 30 x 0.0000067 x 80 = 0.016” increase in length. There must be at least that much extra room between one bearing and the shoulder in the end bracket, or this thermal growth will pre-load the bearing.

Most designs ‘locate’ one end (usually the DE) of the shaft, with sufficient room provided in the other end for thermal expansion of the shaft.  That means the DE bearing is held captive by the housing and bearing cap, to prevent axial displacement of the coupling.  Too much ‘play’ in the motor shaft can damage the driven equipment. 

When a bearing fails, it is often difficult or impossible to determine the original location of the bearing shoulder. This uncertainty demands a reliable method for determining whether the repaired motor has adequate provision for thermal expansion.  By following some basic steps, the assembly mechanic can assure that the motor has this room. 

With both end brackets installed, and the bearing caps tight, place a dial indicator on the ODE bracket to measure axial shaft movement. Use a soft-face mallet to tap the shaft towards the DE, zero the indicator, then tap the shaft towards the ODE.  The only movement should be internal play in the bearing. 

Next, loosen both bearing caps and move the shaft towards the ODE.  The measurement obtained is the available room for thermal growth of the shaft.  There must be room for the shaft to grow thermally without pre-loading the bearings. (Rule of thumb: Allow at least .010” per foot of shaft length between bearings.)  If the motor has enough allowance for thermal growth, the last step is to verify whether the bearing caps are preloading the bearings by pulling outwards (tension pre-load.)

To check this, first tighten the DE bearing cap. This pulls the bearing into its normal operating position.  Now zero the indicator, loosen the DE bearing cap and tighten the ODE bearing cap.  If the shaft moves, then the bearing caps are preloading the bearings.  If not corrected, one of two things will happen. Either a bearing will be dislocated from the shoulder, or the bearing L10h life will be decreased.  The reduction in L10h bearing life will be proportional to the amount of pre-load.  By way of example, a .040” pre-load can decrease L10h bearing life to a matter of hours.

Tip:  When a stock motor is modified for a direct couple application, the DE roller bearing should be replaced with a standard ball bearing. Because the roller bearing is held captive, and the ODE bearing served to locate the shaft, this modification requires that the endplay be corrected.  You could assemble the motor, check the endplay as described above, then dismantle the motor and do the appropriate machine work, but a good shortcut is to machine 0.020” from the ODE bearing cap face, and machine the bearing fit of the ODE end bracket 0.040” deeper.  This ensures that the bearings will not be preloaded in either direction.  Final endplay checks should still be made as outlined above, but the shortcut virtually guarantees that the motor will not have to be dismantled for further machine work.[EasyDNNnews:PaidContentEnd]

Available Downloads

Fundamentals of rolling bearing enclosures, clearances and fits

Fundamentals of rolling bearing enclosures, clearances and fits

Tom Bishop, P.E. 
EASA Technical Support Specialist
 
Much of what will be discussed in this article applies to all rolling bearings, both ball and roller. Our focus, though, will be on issues that relate mostly to ball bearings used in electric motors. The intent is to address some of the fundamentals of rolling bearing enclosures, internal clearances and fits. We deal with rolling bearings every day, but we don’t always consider some of these fundamentals until there is a bearing related problem. 

Note: Rolling bearings were previously referred to as antifriction bearings. The American Bearing Manufacturers Association (ABMA), formerly the Antifriction Bearing Manufacturers Association (AFBMA), now terms antifriction bearings as “rolling bearings.” 

Available Downloads

Fundamentos de los rodamientos: Propósito y características de diseño de los elementos más comunes

Fundamentos de los rodamientos: Propósito y características de diseño de los elementos más comunes

Jim Bryan
Especialista de Soporte Técnico de EASA (retirado)

La fabricación de los rodamientos se ha convertido en un proceso muy preciso y exacto. Estudios han demostrado que más de la mitad de los motores ingresan en los centros de servicio debido a que sus rodamientos se encuentran desgastados o defectuosos. Esto es comprensible, dado que estos componentes están sometidos a desgaste y algunas veces al abuso. Los fabricantes de rodamientos están llamados a mejorar la calidad y la confiabilidad de sus productos para incrementar el tiempo de servicio, antes de que sea necesario reemplazar los rodamientos. Una aplicación adecuada y un buen mantenimiento también son claves para mejorar la confiabilidad. En este artículo discutiremos algunos de los componentes utilizados para entender mejor que tipo de aplicaciones pueden tener cabida.

Available Downloads

Fundamentos de Reparación Mecánica de Motores Eléctricos

Fundamentos de Reparación Mecánica de Motores Eléctricos

Fundamentos de Reparación MecánicaEn toda reparación mecánica, la capacidad para desmontar, reparar y volver a montar el motor de forma apropiada sin dañar innecesariamente ninguna de sus piezas es fundamental. Esto suena sencillo, sin embargo, durante el proceso de desarme se cometen demasiados errores costosos.

Si todos los motores entraran “como nuevos”, la tarea sería más simple, aunque esto no sería garantía de que el montaje del motor fuera adecuado.

Cuando un centro de servicio recibe un pago por reparar un equipo, quiere que este permanezca en funcionamiento, ya que, si el equipo falla dentro del período de garantía, deberá asumir el costo de volver a repararlo. Por lo que tiene sentido realizar la reparación correcta la primera vez.

Los procedimientos de reparación, así como los propios motores, son afectados por los cambios en la tecnología. Este libro intenta incluir las últimas tecnologías comprobadas. En muchos casos, los métodos de reparación tradicionales aún pueden ser la alternativa más práctica. Las opciones presentadas a lo largo de este libro están destinadas a ayudar a los técnicos a seleccionar el método de reparación correcto, reconociendo que la decisión final recae en el propietario del equipo.

Algunas veces los métodos de reparación pierden popularidad, no porque aparezcan métodos mejores sino debido a técnicas deficientes. Otros métodos de reparación son adecuados para algunas aplicaciones, pero no para otras. Es trabajo del reparador decidir cuál será el mejor método para cada caso.

Este libro se encuentra dividido en secciones para los componentes básicos del motor con métodos de reparación y consejos dispersos por todas partes. Donde resulte práctico, se discuten también las causas de fallo. Esto ayudará a los técnicos a seleccionar el método de reparación más apropiado para cada aplicación en particular. La información presentada se basa en publicaciones de EASA y en revistas técnicas y literatura suministrada por fabricantes de motores, proveedores y centros de servicio establecidos.

COMPRAR DESCARGAR COMPRAR VERSIÓN IMPRESA

Tabla de contenido

  • Terminología del motor
  • Aplicaciones del motor y encerramientos
  • Procedimientos de inspección y prueba
  • Consejos para desmontar motores
  • Rodamientos
  • Alojamientos de rodamientos, orificios de eje, sellos y ajustes
  • Ejes
  • Rotores
  • Ensamble del motor
  • Accesorios y cajas de conexiones del motor
  • Dinámica del motor
  • Vibración y geometría del motor
  • Corrientes por el eje/rodamientos
  • Consideraciones especiales para motores a prueba de explosión
  • Fallos en las componentes mecánicas
  • Reparaciones misceláneas

Esta obra contiene muchas sugerencias sobre el manejo apropiado de las diferentes partes de un motor para minimizar los daños durante el proceso de reparación. Sin embargo, es imposible desarrollar un listado que las incluya todas.

En cambio, el principio básico de tomarse el tiempo para usar la herramienta adecuada y por lo general el procedimiento apropiado guiará a los técnicos por el camino correcto.

Good Practice Guide to Maintain Motor Efficiency

Good Practice Guide to Maintain Motor Efficiency

Based on the 2019 and 2003 Rewind Studies of premium efficiency, energy efficient, IE2 (formerly EF1) and IE3 motors

Good Practice Guide to Maintain Motor EfficiencyThe purpose of this guide is to provide repair/rewind practices and tips that will help service center technicians and motor winders maintain or increase the efficiency, reliability and quality of the motors they repair.

Some of the included procedures derive directly from the 2019 and 2003 rewind studies by EASA and AEMT of the impact of repair/rewinding on motor efficiency. Others are based on the findings of an earlier AEMT study [1998] of small/ medium size three-phase induction motors and well-established industry good practices . 

The procedures in this guide cover all three-phase, random-wound induction motors. Much of the guide also applies to form-wound stators of similar sizes. 

(Note: This guide provides many specific procedures and recommendations. Alternative practices may accomplish the same results but must be verified.)

Download a FREE PDF using the link below or buy printed copies in EASA's Online Store

 

Table of Contents Overview

  • Terminology
  • Energy losses in induction motors
  • Motor repair processes
    • Preliminary inspection
    • Dismantling the motor
    • Removing the old winding and cleaning the core
    • Rewinding the motor
    • Reassembling the motor
    • Confirming the integrity of the repair
WARNING: HAZARDOUS AREA MOTORS
Some elements of this Good Practice Guide To Maintain Motor Efficiency, particularly those concerning changes to windings, do not apply to hazardous area/explosion-proof motors (e.g., UL, CSA, IECEx). Do not use this guide for those types of motors.

Available Downloads

Guía de Buenas Prácticas Para Conservar la Eficiencia del Motor

Guía de Buenas Prácticas Para Conservar la Eficiencia del Motor

Basada en los Estudios de Rebobinado de motores de eficiencia premium, energético eficientes, IE2 (antigua EF1) e IE3 realizados en 2019 y en el 2003

Good Practice Guide to Maintain Motor Efficiency

El propósito de esta guía es suministrar prácticas y consejos de reparación/rebo­binado que ayudarán a los técnicos y a los bobinadores del centro de servicios a conservar o aumentar la eficiencia, confiabilidad y calidad de los motores que reparan.

Algunos de los procedimientos incluidos derivan directamente de los estudios sobre el impacto de la reparación/ rebobinado en la eficiencia del motor realizados por EASA y AEMT en los años 2003 y 2019. Otros se basan en los hallazgos del estudio previo efectuado por AEMT [1998] en motores trifásicos pequeños/medianos y en las buenas prácticas industriales bien establecidas.

Los procedimientos de esta guía cubren todos los motores trifásicos de inducción de alambre redondo. Mucha información también aplica a motores con bobinas preformadas (pletina o solera) de tamaños similares.

(Nota: Nota: Esta guía proporciona muchas recomendacio­nes y procedimientos específicos. Se pueden lograr los mismos resultados con otras prácticas, pero deberán ser verificadas.)

Descargue un PDF GRATIS utilizando el link.

 

Tabla de Contenido

  • Terminología
  • Pérdidas de energía en los motores de inducción
  • Procesos de reparación del motor
    • Inspección inicial
    • Desmontaje del motor
    • Remoción del antiguo bobinado y limpieza del núcleo
    • Rebobinado del motor
    • Montaje del motor
    • Confirmando la integridad de la reparación
ADVERTENCIA: MOTORES PARA TRABAJAR EN UBICACIONES PELIGROSAS
Algunos elementos de esta Guía de Buenas Prácticas para Conservar la Eficiencia del Motor, especialmente los relativos a los cambios en los bobinados, no aplican a motores que trabajan en zonas peligrosas/a prueba de explosión (ej., UL, CSA, IECEx). No use esta guía para este tipo de motores.

Available Downloads

How and Why to Avoid Using Counterfeit Bearings

How and Why to Avoid Using Counterfeit Bearings

Antun Peakovic
Schaeffler Group USA, Inc.

How to determine bearing load capability and what to do when it's excessive

How to determine bearing load capability and what to do when it's excessive

Tom Bishop, P.E.
EASA Technical Support Specialist 

Have you ever had to deal with chronic drive end ball bearing failures with a v-belt application? This article will take some of the mystery out of how to determine the load on a bearing, and how to increase the bearing capacity when necessary. The focus will be on bearing loading due to belt pull with v-belt drives. How to modify a motor to accept a cylindrical roller in place of a lower ca­pacity ball bearing will also be detailed. 

Calculating bearing load and life 
The calculation of bearing loading may at first appear to be a daunting task due to the many vari­ables involved. However, taken a piece at a time, the calculations are rather straightforward. An ex­ample will be used to illustrate this point. 

Available Downloads

How up-thrust occurs and provisions to control it in vertical turbine pumps

How up-thrust occurs and provisions to control it in vertical turbine pumps

Gene Vogel
EASA Pump & Vibration Specialist

Vertical turbine pumps (VTP) are driven by vertical motors with large thrust bearings that support the weight of the motor rotor, the pump rotor and the dynamic down-thrust generated by the pump impellers as they lift the liquid. The weight of the motor rotor and pump rotor are easily determined from simple engineering data. The amount of thrust generated by the impellers as they interact with the moving liquid is much more complicated, and the thrust is not always generated in the downward direction.

During certain stages of pump operation, the flow of the liquid through the impellers can generate an upward thrust that can lift the pump rotating assembly. The resulting upward force can cause havoc with thrust bearings in the motor which may be designed to handle only down-thrust. 

This article will briefly review how pump up-thrust occurs and the provisions of VTP motors designed to control it.

Available Downloads

Improve Customer Satisfaction: Follow Electric Motor Storage Procedures

Improve Customer Satisfaction: Follow Electric Motor Storage Procedures

Chuck Yung
EASA Senior Technical Support Specialist

One of the more mundane things we as repairers must be concerned with is motor storage. For many of us, storing large motors for major customers is its own profit center. For all of us, being aware of how our customers store the motors we repair and send to them is critical to customer satisfaction. A poorly stored motor is likely to suffer winding or bearing failure, and we don’t want unrealistic warranty claims over something outside our control.

Our primary concerns when storing motors, especially long-term, are windings, bearings and shaft sag.

Available Downloads

Is a failing bearing causing the vibration?

Is a failing bearing causing the vibration?

Gene Vogel
EASA Pump & Vibration Specialist

When machine vibration increases, one of the first questions asked is: "Is a failing bearing causing the vibration?" In the case of rolling element bearings, it is not difficult to separate vibration caused by a failing bearing from other common faults such as unbalance, misalignment, looseness, etc. But sorting out vibration from a failing rolling element bearing (here-after called "bearing vibration") from process sources such as flow induced and background vibration can be more demanding. The secret is to identify the frequency at which a flaw on a roller or raceway will impact the mating bearing component. These are commonly known as bearing fault frequencies.

Topics covered include:

  • Simple to complex steps in identifying bearing vibration
  • "Locate rpm" function
  • Occurance of sidebands

Available Downloads

Limiting end float of a sleeve bearing machine

Limiting end float of a sleeve bearing machine

Chuck Yung
EASA Senior Technical Support Specialist

There are applications where the end float inherent to a sleeve bearing machine is not desirable, and some means of limiting the axial movement is needed. This is usually accomplished by selecting an appropriate coupling and relying on the driven equipment to prevent axial movement of the motor shaft. 

The gear-hub style of coupling can be end-float limited by installing a “hockey-puck” spacer. The grid-style coupling can be limited by spacers inserted on both sides. 

Regardless of coupling style, unless the driven equipment has some internal means to limit end float, there are circumstances where some external means of preventing axial movement is needed.

Available Downloads

Lubricantes sintéticos para rodamientos con elementos rodantes

Lubricantes sintéticos para rodamientos con elementos rodantes

Art Godfrey (retired)
Birclar Electric & Electronics

Mi primera experiencia con lubricantes sintéticos para rodamientos con elementos rodantes fue durante la reparación de dinamómetros para probar motores de automóviles de alta velocidad. Durante varios años nuestro centro de servicio había reparado máquinas similares con rodamientos con elementos rodantes, pero todas ellas estaban lubricadas con sistemas de bombeo de aceite con accesorios especiales cerca de los rodamientos para suministrar solo pequeñas cantidades de aceite por minuto.

Comenzamos a ver máquinas enviadas para reparación con rodamientos con elementos rodantes lubricadas con grasa y estas indicaban en la placa de datos una marca y tipo de lubricante específicos. Compramos lo que estaba especificado en la placa y todo salió bien. Con el tiempo, comenzamos a ver más máquinas que especificaban la misma marca de grasa, pero con un tipo o grado diferente y esto me condujo a comenzar a buscar las diferencias en los productos, ya que uno era muy costoso y tenía una vida útil limitada.

Available Downloads

Lubrication: Improving bearing performance & reliability

Lubrication: Improving bearing performance & reliability

Jim Bryan 
EASA Technical Support Specialist (retired)

One key method to improve the re­liability of bearings is through proper lubrication. We should always strive to use the best available lubricant in the motors and other rotating equipment we repair. 

Researching quality and compat­ibility – up front – will pay off in the long run. Refer to resources such as Table 1 to determine if the grease you use is compatible with ones that the customer uses (if that information is available). 

Available Downloads

Máquinas verticales con rodamientos de empuje de rodillos esféricos

Máquinas verticales con rodamientos de empuje de rodillos esféricos

Chuck Yung
Especialista Sénior de Soporte Técnico EASA

Un aspecto de nuestra industria de reparación que parece causar mucha confusión es la disposición de los rodamientos de los motores verticales. Existe una gran variedad de disposiciones de rodamientos de empuje y tendemos a intentar aplicar el mismo método para ajustar el juego axial en todos ellos. Por lo general, esta es una mala idea, por lo que este artículo analizará más de cerca específicamente aquellos motores equipados con un rodamiento de empuje de rodillos esféricos y ofrecerá consejos de reparación exclusivos para estos diseños.

Available Downloads

Más sobre rodamientos en aplicaciones y consideraciones verticales

Más sobre rodamientos en aplicaciones y consideraciones verticales

Jim Bryan
Especialista de Soporte Técnico de EASA

Los motores verticales se pueden identificar por la capacidad de soportar cargas de empuje externas. Una aplicación común en la que encontramos este factor son las bombas verticales. La carga de empuje aplicada es la suma del peso del eje lineal intermedio de la bomba (line shaft), la columna de agua que se está levantando, el peso del impulsor de la bomba y el empuje producido por las volutas de la bomba que fuerzan el agua hacia arriba. La distancia entre el motor y el impulsor puede ser muy corta, tal como sucede al bombear agua desde un acuífero subterráneo que se encuentra a cientos de pies de profundidad, hasta un tanque situado por encima o por debajo del suelo. En este último ejemplo, el peso combinado de la carga de empuje puede ser de miles de libras (kilogramos). El motor deberá estar diseñado con un rodamiento capaz de soportar estas cargas, por lo que se  utilizan rodamientos de empuje.

Available Downloads

Matched set super precision bearings: Factors to consider

Matched set super precision bearings: Factors to consider

Closer Look At ABEC Standards, Other Basics To Provide Better Service

Joe Wilkinson
Bartlett Bearing Company, Inc. 
Gastonia, North Carolina 

There are many reasons for the use of precision grade bearings. The selection of type and size are specific to the application. Some of the deter­mining factors are load ratings, both radial and axial, operating speeds, temperature and the degree of accu­racy during operation. 

Bearings are made to exacting toler­ances and are rated in various levels of accuracy. These standards were established by the Annular Bearing Engineers’ Committee (ABEC) for the American Bearing Manufacturers Asso­ciation which has been the benchmark in the industry since the early 1900s. 

The ABEC scale classifies differ­ent accuracy and tolerance ranges into classifications 1, 3, 5, 7 and 9. These classifications or grades are issued to a bearing after a series of vigorous measuring and testing procedures have been completed. 

Available Downloads

Measuring a Bearing Journal

Measuring a Bearing Journal

This video explains how to measure the diameter of a bearing journal accurately to within five hundred-thousandths of an inch or one-thousandth of a millimeter. This critical step will determine if the shaft needs any repairs for proper bearing fitment.

Topics covered include:

  • Tools and supplies needed
  • How to validate micrometer accuracy
  • Minimum number of measurement locations
  • How to measure a bearing journal

Mechanical Reference Handbook

Mechanical Reference Handbook

Mechanical Reference HandbookDESCRIPTION
This 94-page handbook (3.5" x 6", 9cm x 15cm) contains carefully selected materials designed to assist repair firms in their everyday work. Just as important, your customers and potential customers can use this pocket handbook as a handy reference for mechanical data for motors and driven equipment. Buy this great resource as is OR custom brand your company logo and information on the cover to turn it into a great marketing piece for your salespeople!

BUY COPIES OF THIS HANDBOOK

TABLE OF CONTENTS

Alignment
Alignment Information
Suggested Alignment Tolerances
ANSI/ASA Alignment Quality

Balancing And Vibration
Single-Plane Versus Two-Plane Balancing
Vibration Tests
Unfiltered Housing Vibration Limits
FFT Vibration Analysis
Vibration Constants
Vibration Conversion Factors
Electric Motor Vibration Diagnostic Chart

Motor Application Forumlas
Output
Shear Stress
Speed–AC Machinery 
Affinity Laws–Centrifugal Applications

Conversion Factors, Equivalencies & Formulas
Conversion Factors
Temperature Conversion Chart
Common Fractions Of An Inch–Decimal & Metric Equivalents
Prefixes–Metric System
Formulas For Circles

Bearings
Nominal Dimensions For Radial Ball Bearings
Nominal Dimensions For Cylindrical Roller Bearings
Radial Ball Bearing Fit Tolerances
Cylindrical Roller Bearing Fit Tolerances
Lock Nuts And Lock Washers For Ball Bearings

Motor Bearing Lubrication
Lubricating Oil Viscosity Conversions
NLGI Grease Compatibility Chart
Grease Classifications
Grease Relubrication Intervals

Metals And Alloys
Properties Of Metals And Alloys
Weight Formulas For Steel
Thermal Linear Expansion

Bolts
ASTM And SAE Grade Markings For Steel Bolts And Screws
Precautions For Tightening Bolted Joints
Bolt Tightening Torque Values
Tap Drills And Clearance Drills For Machine Screws

Keys And Keyseats
NEMA Keyseat Dimensions–Foot-Mounted AC & DC Machines
IEC Shaft Extension, Key And Keyseat (Keyway) Dimensions
Square And Flat Stock Keys
Standard Keyseat Sizes
Metric Keys–Standard Sizes

Belts And Sheaves
Pulley Formulas For Calculating Diameters and Speeds
Belt Installation
Belt Tensioning
Belt Deflection Force And Elongation Ratio
Standard V-Belt Profiles And Dimensions
V-Belt Sheave Dimensions
V-Belt Sheave Dimensions For AC Motors With Rolling Bearings
Application Of V-Belt Sheave Dimensions To AC Motors With Rolling Bearings
Mounting Of Pulleys, Sheaves, Sprockets, And Gears On Motor Shafts
Minimum Pitch Diameter For Drives Other Than V-Belts

Welding, Brazing And Soldering
Recommended Copper Welding Cable Sizes
Types Of Weld Joints 
Brazing
Basic Joints For Brazing
Soldering
Melting Temperatures Of Tin-Lead-Antimony Alloys
Flux Requirements For Metals, Alloys And Coatings

Slings, Wire Rope, Shackles and eyebolts
Types Of Slings
Typical Sling Hitches
Wire Rope
Spreader Bars
Lifting Capacity
Forged Shackles
Eyebolt Strength

Common Signals For Crane

Available Downloads

Mechanical Repair Fundamentals of Electric Motors (2nd Edition)

Mechanical Repair Fundamentals of Electric Motors (2nd Edition)

Mechanical Repair Fundamentals coverFundamental to every good mechanical repair is the ability to disassemble, repair and reassemble the motor correctly without unnecessary damage to any of the motor parts. This sounds simple, and yet too many costly mistakes are made in this process of taking things apart. If every motor repaired was in “as new” condition, the task would be much simpler. But this would be no guarantee that the reassembly would be correct.

​There is usually an easy way and a hard way to remove and install parts. Brute force is seldom the easiest or the correct way. The old saying of “don’t force it, get a bigger hammer” is seldom the best way.

When a service center is paid to repair equipment, the service center wants it to stay in operation. If the equipment fails again—within the warranty period—the service center pays to repair it again. It makes sense to repair it correctly the first time.

In order to improve equipment, it is important to know how and where it operates. Without understanding why a motor fails, it is impossible to deliberately improve its mean time between failures.

To do this, there must be communication between the service center and the motor user. Not only does this help the repairer decide the best course of action, but it helps the user appreciate the professionalism of the service center.

Repair procedures, like motors themselves, are affected by changes in technology. This book attempts to include the latest proven technologies. Time-honored methods of repair, in many cases, may still be the most practical option. Options presented throughout this book are intended to help the technician select the appropriate repair method, recognizing that the ultimate decision rests with the equipment owner.

Repair methods sometimes fall into disfavor, not because better methods are introduced, but because of poor techniques. Other repair methods are well-suited to some applications but not to others. It is the job of the repairer to decide what is the best method for each case.

This book is divided into sections for basic motor components with repair methods and tips dispersed throughout. Where practical, reasons for failures are also discussed. These will aid the technician in selecting the most appropriate method of repair for each unique application.

The information presented draws from EASA publications, IEEE publications, technical journals and literature supplied by vendors, motor manufacturers and established service centers.

This book contains many suggestions on how to correctly handle the various parts of a motor during the repair process so as to minimize damage. However, it is impossible to develop an all-inclusive list. Instead, the basic principle of taking the time to use the correct tool and correct procedure will usually lead the technician down the right path. Always remember, if it has to be forced beyond reason, it might be that neither the proper tool or procedure is being used or something is wrong with the parts. Step back and ask “What am I overlooking?”

Table of Contents

  1. Motor Nomenclature
  2. Motor Applications and Enclosures
  3. Test and Inspection Procedures
  4. Motor Disassembly Tips
  5. Bearings
  6. Bearing Housing Repair, Shaft Openings, Seals and Fits
  7. Shafts
  8. Rotors
  9. Motor Assembly
  10. Motor Accessories and Terminal Boxes
  11. Motor Dynamics
  12. Vibration and Motor Geometry
  13. Shaft/Bearing Currents
  14. Special Considerations for Explosion-Proof Motors
  15. Failures in Mechanical Components
  16. Miscellaneous Repairs

This book is available as part of EASA's Fundamentals of Mechanical Repair seminar.

BUY A COPY
BOOK DOWNLOAD CD-ROM BOOK & CD-ROM

Mejore la Satisfacción del Cliente: Siga los Procedimientos de Almacenamiento de Motores Eléctricos

Mejore la Satisfacción del Cliente: Siga los Procedimientos de Almacenamiento de Motores Eléctricos

Chuck Yung
Especialista de Sénior de Soporte Técnico de EASA

Una de las cosas más mundanas de las que debemos preocuparnos como reparadores es el almacenamiento de los motores y para muchos, almacenar motores grandes para clientes importantes representa ganancias. Para todos nosotros, ser conscientes de cómo nuestros clientes almacenan los motores que les reparamos es crítico desde el punto de vista de la satisfacción del cliente. Es probable que un motor mal almacenado sufra fallos en el devanado o en los rodamientos, y no queremos reclamos por garantía poco realistas sobre algo que está fuera de nuestro control.

Nuestras principales preocupaciones al almacenar motores, especialmente a largo plazo, son los devanados, los rodamientos y el pandeo del eje.

Available Downloads

More on vertical bearing applications and configurations

More on vertical bearing applications and configurations

Jim Bryan
EASA Technical Support Specialist

Vertical motors can be identified by their capacity for an external thrust load. One common application with this factor is vertical pumps. The thrust load applied is the sum of the weight of the pump line shaft, the column of water in the casing that is being lifted, the weight of the pump impeller and the thrust produced by the pump’s volutes which forces the water to move upward.  The distance between the motor and the impeller can be very short such as pumping from a tank at or above ground level to lifting water from a subsurface aquifer several hundred feet deep. In the lat­ter example, the combined weight of the thrust load can be thousands of pounds (kilograms). The motor must then have a bearing design capable of these loads utilizing thrust bearings.

Available Downloads

Motor bearings: Electrical damage simplified

Motor bearings: Electrical damage simplified

Joe Junion
L&S Electric,Inc.

Electrical bearing damage has become a very common issue in electric motors. This is not a new problem, but awareness has put the spotlight on this important reliability factor and industry has stepped up to deal with it.

Let’s keep it simple though. Voltage is induced on the rotating member of an electric motor. If the voltage level gets high enough, it will discharge across the thin lubrication film of a bearing and cause damage.

Topics covered in this article include:

  • Effects of arcing
  • Detecting shaft voltage
  • Preventing damage
  • Shaft grounding products
  • Identifying and assessing damage

Available Downloads

Motor Lubrication Cautions & Tips

Motor Lubrication Cautions & Tips

Lubrication is a vital part of any machine that moves. Understanding the mechanism that grease and oil use to provide that lubrication is important so that the maximum life of the equipment can be achieved.

This presentation discusses ways to get the most benefit from the lubricant by choosing the proper oil or grease and properly maintaining the equipment.

Critical to the process are compatibility, re-lubrication quantity and frequency and avoiding contamination.

Target audience: This presentation is most useful for service center and field technicians, service center managers and engineers desiring to specify the proper lubricant and help motor users understand proper re-lubrication for the best effect.

Motor Rolling Element Bearing Failures

Motor Rolling Element Bearing Failures

Austin Bonnett
Austin Bonnett Engineering LLC

The purpose of this article is to provide enough rolling element bearing fundamentals so those who are responsible for the application, operation, maintenance and repair of electric motors can take the necessary steps to minimize premature bearing failures and enhance the possibility of bearings lasting until the "end of life" predictions, which is normally referred to as L10 bearing life.

Available Downloads

Preloading roller bearing motors for no-load run testing

Preloading roller bearing motors for no-load run testing

Practical tips for running motors with a drive end roller bearing

Kirk Kirkland
Electrical Repair Service Co. 
Birmingham, Alabama
Technical Education Committee Member

Editor's Note: This article is similar to a July 2006 Currents article titled "Tips for Test Running Motors With Roller Bearings." These two articles complement and supplement each other.

End users frequently demand that EASA service centers provide an array of test data at the conclusion of the service/repair process. These tests are normally to validate compliance with the customer’s motor repair specifications. It is also a good idea to have your own in-house specifications so you can prove that you’re compliant with EASA motor repair guidelines such as those found in the Recommended Practice for the Repair of Rotating Electrical Apparatus (ANSI/ EASA AR100-2006).

One of the more common tests involves running the motor no-load and providing the motor owner with electrical test information and vibration spectrums covering various frequency bands. No-load run tests are commonly applied to AC induction motors. In many cases, these motor types are designed for a belted-duty application. That means they may have a roller bearing in the drive end of the motor. The most common roller bearings utilized in belted applications are the two-piece NU type that consists of an inner race mounted on the bearing shaft journal and the rollers caged on the outer race.

Available Downloads

Principios de Motores C.A. Medianos y Grandes - NEMA

Principios de Motores C.A. Medianos y Grandes - NEMA

Las versiones impresas y en forma de descarga del valioso manual didáctico / recurso de EASA, “Principios de Motores C.A. Medianos y Grandes”, se encuentran ahora disponibles en inglés y en español. El manual incluye gráficos e ilustraciones, fotografías y mucha información técnica sobre máquinas C.A., incluyendo como funcionan, información específica sobre los tipos de encerramientos, fabricación de componentes y aplicaciones.  Muchos de los principios incluidos en el libro aplican a todos los motores C.A., especialmente a aquellos accesorios que fueron asociados en el pasado con las máquinas más grandes (como encoders, RTDs, termostatos, calentadores de espacio, sensores de vibración, etc.).

Las versiones  forma de descarga ofrecen funciones prácticas ya que contienen toda la información que contiene el manual impreso, pero en formato PDF, fácil de usa, ya que contiene marcadores que permiten a los lectores navegar rápidamente por el documento y “saltar” a la página deseada.

Las secciones del manual incluyen:

  • Terminología y Definiciones del Motor
  • Tipos de Encerramientos de Motores
  • Aplicaciones Típicas para Motores
  • Consideraciones de Manejo y Seguridad
  • Teoría Básica del Motor
  • Normas para Motores
  • Estatores
  • Rotores de Jaula de Ardilla
  • Ejes
  • Lubricación y Rodamientos
  • Accesorios del motor & Cajas de Conexiones
  • Procedimientos de Inspección y Prueba
  • Alineamiento del Motor, Vibración y Ruido
  • Procedimientos de Almacenamiento
  • Máquinas Sincrónicas

COMPRAR

Principles of Medium & Large AC Motors, 1st Edition - IEC

Principles of Medium & Large AC Motors, 1st Edition - IEC

This version of Principles of Medium & Large AC Motors manual is now available to address applicable IEC standards and practices. This 360-page manual was developed by industry experts in Europe along with EASA's engineering team. (The "original" version of this book based on NEMA standards remains available as a separate document.)

This manual includes drawings, photos and extensive text and documentation on AC motors, including how they work, information on enclosures, construction on components and applications. Many of the principles included apply to all AC motors, especially those with accessories that are associated with larger machines in the past (such as encoders, RTDs, thermostats, space heaters and vibration sensors).

While the manual covers horizontal and vertical squirrel-cage induction motors in the 37 to 3,700 kW (300 to 5,000 hp) range, low- and medium-voltage, most of the principles covered apply to other sizes as well. 

This valuable instructional/resource manual is available in printed and downloadable versions, and focuses primarily on IEC motors.

Sections in the manual include:
(Download the PDF below for the complete Tables of Contents)

  • Motor nomenclature & definitions
  • Motor enclosures
  • Typical motor applications
  • Safety & handling considerations
  • Basic motor theory
  • Motor standards
  • Stators
  • Squirrel cage rotors
  • Shafts
  • Bearings & lubrication
  • Motor accessories & terminal boxes
  • Test & inspection procedures
  • Motor alignment, vibration & noise
  • Storage procedures
  • Synchronous machines

BUY A COPY FOR YOUR OFFICE

PRINTED BOOK DOWNLOADABLE PDF

This book is also available focusing on NEMA Standards — in both English and Español.

NEMA - English NEMA - Español

Available Downloads

Principles of Medium & Large AC Motors, 2nd Edition - NEMA

Principles of Medium & Large AC Motors, 2nd Edition - NEMA

This valuable instructional/resource manual is available in printed, downloadable and CD-ROM versions.

For this second edition, this 320-page manual has been reorganized, updated with new information, including revised standards and published articles, and edited extensively. The manual includes drawings, photos and extensive text and documentation on AC motors, including how they work, specific information on enclosures, construction of components and applications. Many of the principles included apply to all AC motors, especially those with accessories that were associated with larger machines in the past (such as encoders, RTDs, thermostats, space heaters, vibration sensors, etc.).

While the manual covers horizontal and vertical squirrel-cage induction motors in the 300 to 5,000 horsepower range, low- and medium-voltage, most of the principles covered apply to other sizes as well.

This manual focuses primarily on NEMA motors.

Sections in the manual include:

  • Motor nomenclature & definitions
  • Motor enclosures
  • Typical motor applications
  • Safety & handling considerations
  • Basic motor theory
  • Motor standards
  • Stators
  • Squirrel cage rotors
  • Shafts
  • Bearings & lubrication
  • Motor accessories & terminal boxes
  • Test & inspection procedures
  • Motor alignment, vibration & noise
  • Storage procedures
  • Synchronous machines

BUY NOW

BOOK DOWNLOAD CD-ROM BOOK & CD-ROM

This book is also available focusing on IEC Standards ... IEC VERSION

 

Procedimientos y Precauciones al Convertir Cojinetes de Deslizamiento a Rodamientos de Bolas/Rodillos

Procedimientos y Precauciones al Convertir Cojinetes de Deslizamiento a Rodamientos de Bolas/Rodillos

Chuck Yung
Especialista Sénior de Soporte Técnico de EASA

Existen ocasiones en las que una aplicación requiere que un motor soporte una carga radial para la que los cojinetes de deslizamiento no son adecuados. En casos como bajas revoluciones, carcasas inusuales, etc., puede ser conveniente convertir el motor del cliente montado sobre cojinetes de deslizamiento envés de obtener un motor de repuesto con rodamientos de bolas / rodillos. Este artículo contiene procedimientos sugeridos y advertencias sobre problemas potenciales relacionados con dichas conversiones.

Primero, inspeccione las tapas del motor para asegurarse de que tengan la rigidez mecánica suficiente para soportar la carga y suprimir la vibración (vea la Figura 1). Si las tapas carecen de rigidez, puede que sea necesario utilizar tapas nuevas fabricadas con un material más grueso. En otros casos, se puede utilizar un inserto para reforzar la tapa existente.

Available Downloads

Recuerde seguir el ABC de la inspección de rodamientos

Recuerde seguir el ABC de la inspección de rodamientos

Chuck Yung
Especialista Sénior de Soporte Técnico de EASA

Muchos de sus clientes cuentan con buenos departamentos de mantenimiento predictivo propios y otros lo subcontratan con proveedores externos calificados. En ambos casos, ellos deben saber cuando un rodamiento presenta deterioro y sacar de servicio el motor antes que el fallo se vuelva desastroso. En términos de mantenimiento, esto ahorra mucho dinero, lo cual es excelente. Pero si el cliente se detiene ahí, sin descubrir por qué el rodamiento está mal, su motor puede regresar reparado de nuevo con el mismo problema. Los rodamientos defectuosos aportan una gran cantidad de evidencias, si solamente las buscamos.

La clave consiste en la comunicación con el cliente, dado que nosotros los reparadores, sabemos que el motor fue retirado del servicio debido a un fallo en los rodamientos, podemos ir un paso más adelante en el proceso de diagnóstico.

Especialmente debido al uso frecuente de los variadores de velocidad electrónicos (VFDs), las corrientes por los rodamientos causan un número considerable de fallos en los mismos. Si sabemos que el motor funciona con un variador de velocidad electrónico, existen medidas correctivas para prevenir fallos futuros del mismo tipo. Y esos pasos adicionales son facturación extra. Ignorar esos pasos de inspección adicionales, es como olvidar dinero encima de la mesa, tanto para el centro de servicios como para el cliente.

Available Downloads

Remember to follow the ABCs of bearing inspection

Remember to follow the ABCs of bearing inspection

Chuck Yung
EASA Senior Technical Support Specialist

Many of your customers have good in-house predictive maintenance departments and others outsource that skill. Either way, they should know when a bearing is deteriorating and remove the motor from service before it turns into a catastrophic failure. That saves a lot of maintenance dollars, which is great. But if the customer stops there, without discovering why that bearing is bad, your repaired motor could be returned with the same problem again. Defective bearings often hold a great deal of evidence, if we only look for it. 

The key is communication with the customer so that we repairers know that the motor was removed for bearing faults, and so that we can go a step further in the diagnostic process. Especially with the prevalence of variable frequency drives (VFDs), bearing currents cause a significant number of bearing failures. If you know the motor is operating from a drive, there are corrective measures to prevent future failures of the same type. And those extra steps are billable extras. Neglecting these additional inspection steps is like leaving money on the table, for both the service center and the customer.

Available Downloads

Rodamientos del motor: Daño eléctrico resumido

Rodamientos del motor: Daño eléctrico resumido

Joe Junion
L&S Electric, Inc.

El daño eléctrico de los rodamientos se ha convertido en un problema muy común en los motores eléctricos. Este no es un problema nuevo, pero la concientización ha arrojado luz sobre este importante factor de confiabilidad y la industria ha dado un paso adelante para afrontarlo.

Sin embargo, hagámoslo simple. Se induce voltaje en una parte rotativa de un motor eléctrico. Si el nivel de voltaje sube lo suficiente, se descargará a través de la fina película de lubricación de un rodamiento y causará daños.

Los temas incluyen:

  • Efectos del arco eléctrico
  • ​Detectando el voltaje en el eje
  • Previniendo el daño
  • Productos para la puesta a tierra del eje
  • Identificando y evaluando el daño

Available Downloads

Root Cause Failure Analysis, 2nd Edition

Root Cause Failure Analysis, 2nd Edition

Root Cause Failure Analysis coverThis book was developed to help electric motor technicians and engineers prevent repeated failures because the root cause of failure was never determined. There are numerous reasons for not pursuing the actual cause of failure including:

  • A lack of time.
  • Failure to understand the total cost.
  • A lack of experience.
  • A lack of useful facts needed to determine the root cause.

The purpose of this book is to address the lack of experience in identifying the root cause of motor failures. By using a proven methodology combined with extensive lists of known causes of failures, one can identify the actual cause of failure without being an “industry expert.” In fact, when properly used,  this material will polish one’s diagnostic skills that would qualify one as an industry expert.

The book is divided into the various components of an electric motor. In addition to a brief explanation of the function of each component and the stresses that act upon them, numerous examples of the most common causes of failure are also presented.

For this second edition, the manual has been reorganized and updated with new information including a new approach to methodology, new case studies and a new section covering synchronous machine failures. This could not have been done without many contributions from EASA members and the Technical Education Committee. 

The all new “Root Cause Methodology” section goes into great detail explaining that effective root cause failure analysis must take place within the context of a practical problem-solving methodology or framework. It covers a modified Plan-Do-Check-Act process that emphasizes the importance of planning and the related problem-solving methodology components. This section also explains A3, a high-level reporting tool that is very effective for problem solving.

In addition, besides a systematic approach to problem solving, root cause failure analysis of motors and motor systems requires familiarity with contributing factors attributable to various kinds of applications, environments and industries. This includes how various stresses can affect motor components and the reciprocal impact the motor system may have on the motor. This section includes a table with a detailed summary of motor stresses. 

There also is a new section on “Synchronous Machine Failures” and an expanded “Case Studies” section. Readers are guided through eight case studies.

With 328 pages, the book provides extensive information, including a wide range of failures, the likely causes listed, and the methodology for confirming the probable cause of each failure. 

Members may purchase a printed manual and/or a PDF download. The printed manual is in black and white, while the download shows most of the failure photos in color.  

Sections in the manual include:

  • Root Cause Methodology (all new)
  • Bearing Failures
  • Stator Failures
  • Shaft Failures
  • Rotor Failures
  • Mechanical Failures
  • DC Motor Failures
  • Synchronous Machine Failures (all new)
  • Accessory Failures
  • Case Studies (expanded)
  • References

This book is available as part of EASA's Root Cause Failure Analysis seminar.

BUY NOW
PRINTED COLOR BOOK DOWNLOADABLE PDF PRINTED COLOR BOOK & PDF


DISCOUNTED BLACK & WHITE BOOKS!
Prices are now DISCOUNTED on remaining black & white books while supplies last! If you have already purchased a black & white manual and are interested in the color version, please contact EASA Customer Service (+1 314 993 2220).

B&W BOOK B&W BOOK & DOWNLOAD


 

Available Downloads

Selecting the correct bearing seal

Selecting the correct bearing seal

Tom Bishop, P.E.
EASA Senior Technical Support Specialist

The primary functions of a bearing seal are to keep lubricant in the bearing and bearing chamber, and to exclude contaminants from that area. The dis­cussion in this article relates to seals that are external to the bearing and therefore not a part of the bearing itself.

Key factors in bearing seal selection include:  

  • The type of lubricant (oil or grease)
  • The type of bearing (rolling or sleeve)
  • Shaft surface speed, connection to load (e.g., direct-coupled or belted)
  • Seal friction and consequent heat­ing
  • Physical space available

Available Downloads

Sensores de Temperatura para Bobinados y Rodamientos

Sensores de Temperatura para Bobinados y Rodamientos

En Español

Jasper Electric Motors, Inc.Carlos Ramirez
Especialista de Soporte Técnico de EASA

Para monitorear la temperatura de los bobinados y en los rodamientos se pueden usar diferentes tipos de dispositivos. La correcta identificación de los mismos es importante para determinar el tipo de  sensor en casos en los que el dispositivo es desconocido o para escoger el dispositivo correcto para una determinada aplicación.

El webinario incluye:

  • RTDs
  • Termopares, termostatos y termistores
  • Determinar el tipo de sensor desconocido y pruebas
  • Controladores

Este webinario es útil para bobinadores, mecánicos, supervisores y técnicos de pruebas.

Winding and Bearing Temperature Sensors

Carlos Ramirez
EASA Technical Support Specialist

Different types of devices can be used to monitor winding and bearing temperature. Correctly identifying detector types is important to determine the type of sensor in cases where the temperature detector is unknown or for choosing the correct device to fit an application.

This recording covers:

  • RTDs
  • Thermocouples, thermostats, and thermistors
  • Determining unknown type of detector and testing
  • Controllers

This recording is intended for winders, mechanics, supervisors, and testing technicians.

Available Downloads

Shaft and Bearing Currents

Shaft and Bearing Currents

Presented by Chuck Yung
EASA Senior Technical Support Specialist

This webinar explains what shaft currents are, what causes them, and differentiates between the two common causes:

  1. Circulating currents which affect DC motors and AC motors not operating from a drive
  2. Shaft currents caused by operation from a VFD, and how to tell the difference between the two.

This webinar also discusses and compares methods to mitigate shaft currents and explains why the different causes of shaft currents require different solutions. It covers:

  • Shorted rotor iron
  • Uneven air gap
  • Unbalanced voltage
  • What type of grounding brush works best?
  • Role of carrier frequency in causing shaft currents
  • How to recognize the problem on site
  • Insulation thickness, capacitance, and types of insulated bearings

This information is useful to engineers, service center managers, mechanics and anyone interacting with customers.

Available Downloads

Sleeve bearing clearance depends on many factors

Sleeve bearing clearance depends on many factors

By Chuck Yung
EASA Senior Technical Support Specialist

It’s fair to say that one’s outlook on life is colored by experience. A good example of this with sleeve bearing motors is the question, “What’s the proper clearance between a shaft and the sleeve bearing it rides in?” Chances are each of us has a rule of thumb for this, probably related to shaft diameter. Some of these may look familiar:

  • One thousandth, plus 1 per in. of diameter
  • Two thousandths, plus 1 per in. of diameter
  • 0.0015 in. per in. of diameter
  • 0.002 in. per in. of diameter

They can’t all be right, yet many of us may have used one of these rules (probably not the same one, either!) with great success. Which one, if any, is correct? The answer depends on the application.

READ THE FULL ARTICLE

Sleeve bearing clearance depends on many factors

Sleeve bearing clearance depends on many factors

Chuck Yung
EASA Technical Support Specialist

Member question: Can you settle a disagreement about the subject of sleeve bearing clearance? We have several contradictory guidelines, some of them from manufacturers. Which is best?

It is fair to say that our outlook on life is colored by experiences. In our industry, those experiences often are shaped by the customers we serve. A good example is this question about the proper clearance between a shaft and the sleeve bearing it rides in.


 

Available Downloads

Sleeve Bearing to Ball / Roller Bearing Conversion Procedures and Cautions

Sleeve Bearing to Ball / Roller Bearing Conversion Procedures and Cautions

Chuck Yung
EASA Senior Technical Support Specialist

There are times when an application calls for a motor to carry a radial load for which sleeve bearings are not suitable. In cases such as low rpm, unusual frames, etc., it may be desirable to convert a customer's existing sleeve bearing motor rather than obtaining a ball/roller replacement motor. This article contains suggested procedures as well as cautions about potential problems with such conversions.  

First, inspect the end brackets to ensure they are mechanically rigid enough to support the load and suppress vibration (see Figure 1). If the end brackets lack rigidity, it may be  necessary to use complete fabricated replacements using thicker material. In other cases, gusseting can be used to stiffen the existing bracket.

Available Downloads

Start with cause of oil leaks in repair process on sleeve bearing motors

Start with cause of oil leaks in repair process on sleeve bearing motors

Chuck Yung 
EASA Technical Support Specialist 

Have you ever repaired a sleeve bearing motor, only to have the customer complain that it leaks oil? Perhaps the motor had a history of oil leaks, and the windings were oil-saturated when you dismantled it. Two-pole machines are especially notorious as chronic oil leakers. The first step toward correct­ing an oil leak is to identify the cause. 

A good place to start is to determine whether the motor has a forced-oil system. If so, check for a metering plate in the oil supply line. The typical metering plate (see figure) has about a 3/32 diameter orifice to meter the volume of oil. Often installed in a pipe union, the metering plate is easily lost when the motor is removed from service. The repairer rarely gets the forced-oil system with the motor.  The customer does not recognize that little piece of metal that looks like a conduit knockout, and that tiny hole can t possi­bly be for oil flow. So it gets thrown away. 

Available Downloads

Synthetic lubricants for use in rolling element bearings

Synthetic lubricants for use in rolling element bearings

Art Godfrey (retired)
Birclar Electric & Electronics

My first exposure to synthetic lubricants for rolling element bearings was during repair of high-speed, automotive engine-test dynamometers. For several years, our service center had repaired similar machines with rolling element bearings, but they were all oil lubricated by pump systems with specially-selected fittings near the bearings to deliver only small amounts of oil per minute.

We began to see rolling-element-bearing machines in for repair that were grease lubricated, and these displayed a specific make and type of lubricant on the nameplate. We purchased what was specified on the nameplate and all was well. Over time, we began to see more machines specifying the same make of grease, but a different grade or type. This led me to begin looking into the differences in the products, since each one was fairly costly and had a limited shelf life (for instance 24 months if in an unopened container).

Topics covered include:

  • Details of the process
  • Range of synthetic greases
  • Things to carefully consider

Available Downloads

The quest to find the ‘perfect’ bearing fit

The quest to find the ‘perfect’ bearing fit

Measuring is critical to the reliability of rotating equipment

By Jim Bryan
EASA Technical Support Specialist (retired)

Much has been said and done to produce the "perfect" fit for rolling element bearings in motors and other rotating equipment. Assembly of these machines requires that either the inner fit to the shaft (journal) or the outer fit to the housing (bore) is able to slide; so if one fit is tight, the other must be loose. While "tight" and "loose" are relative terms that must be defined in the quest for the perfect fit, any fit that's too loose or too tight can lead to early bearing failure and costly downtime.

A tight (interference) fit is usually recommended for motor bearing journals. Standard fits for radial ball bearing journals range from j5 to m5; the standard housing fit is H6. These are the "standard" fits and may be different depending on the machine designer's understanding of the application.

READ THE FULL ARTICLE

The quest to find the perfect bearing fit

The quest to find the perfect bearing fit

Jim Bryan
EASA Technical Support Specialist

Much has been said and much work performed to produce the “perfect” bearing fit. For any single bearing, there is an inner fit to the shaft and an outer fit to the housing. It is required that one of the two fits be able to slide in order to assemble the machine. If the bearing-to-shaft fit (journal) is tight, then the bearing-to-housing (bore) must be loose. Of course tight and loose are relative terms and the quest for the perfect fit must define these terms.

A tight fit, also known as an inter­ference fit, is usually recommended for a motor bearing journal. The range for radial ball bearing journal fits is from j5 to m5, and the housing fit is H6 (see Table 1). These are the “standard” fits and may be different depending on the machine design­ers understanding of the application. Table 1 is derived from Table 2-13 of ANSI/EASA AR100 Recommended Prac­tice for the Repair of Rotating Electrical Apparatus. It shows the relationship of bearing size to fit tol­erances. Generally, as the bearing gets larger, the tolerance widens. The key to this chart is that the journal fit is always interference and the bore fit is always line-to-line to loose. See AR100 for additional radial ball and roller bearing sizes.

Available Downloads

Tip for Vertical Hollow-Shaft Motor Assembly

Tip for Vertical Hollow-Shaft Motor Assembly

Dann Bartos
Target Electric Motors, Inc.

Vertical hollow-shaft motors present some unique reassembly challenges, one of which is setting end play. Here's a tip that applies to assembly of vertical hollow-shaft motors in the 320 to 440 frame drip-proof enclosures with grease lubricated lower guide bearings and oil-lubricated upper thrust bearings.

Available Downloads

Tips for test running motors with roller bearings

Tips for test running motors with roller bearings

Cyndi Nyberg
Former EASA Technical Support Specialist

Editor's Note: This article is similar to a February 2010 Currents article titled "Preloading roller bearing motors for no-load run testing." These two articles complement and supplement each other.

Ball and sleeve bearing motors can always be test run without any type of external load on the motor and bearings. 

However, when repairing a motor equipped with roller bearings that is used in an application with a radial load, such as a belted load, it is not advisable to perform the standard no-load test run for any length of time. Yet the no-load test run is a crucial step in the repair process to ensure proper operation. Without that radial load, the bearings can be damaged. This article will describe two ways to put a load on the shaft of a motor and therefore the roller bearing, so that it can be test run to ensure that it has been properly repaired. 

Available Downloads

Understand vertical motor bearings

Understand vertical motor bearings

Vertical motors differ from horizontal units in various ways, including their oil-leak risks

By Jim Bryan
EASA Technical Support Specialist (retired)

Bearing construction is a key difference between vertical motors and horizontal motors that are mounted vertically. Vertical motors typically drive pumps using thrust bearings. Horizontal motors rarely have those types of bearings. Understanding relevant construction and configuration factors is crucial when confronting lubrication-related issues that can be associated with vertical-motor bearings.

READ THE ARTICLE

Understanding bearing vibration frequencies

Understanding bearing vibration frequencies

Dave Felten 
Mechanical Field Service Department 
L&S Electric, Inc. 
Schofield, Wisconsin 

Welcome to the age of predictive maintenance technologies. More and more of our customers are using tools such as vibration analysis to assess the health of their rotating equipment. 
Many of our customers are using this technol­ogy to assess new and rebuilt rotating equipment once it’s installed and running. 

This serves two main purposes: 

  1. It demonstrates the quality of the newly acquired/repaired equipment (taking the burden off the supplier/service center should the equipment vibrate once it’s installed). 
  2. It provides a baseline for trending. Unfortunately, these initial vibration readings can be pushed into an “alarm status” by many customer-related issues such as poor coupling alignment and/or machine installation. This is why it’s so important for today’s repair facility to provide the customer with “baseline” vibra­tion data gathered during its final test run, providing evidence that the rotating equipment ran within general vibration guidelines before being shipped. 

Available Downloads

Value-added Repair and Service Opportunities for Optimizing Motor Reliability

Value-added Repair and Service Opportunities for Optimizing Motor Reliability

Tom Bishop, P.E.
EASA Senior Technical Support Specialist

For most service centers the traditional repair services such as electric motor rewinding have been and will continue to be in a state of decline over time. Among the factors leading to this reduction in business are conversions to more efficient motors, improved maintenance of existing motors, incentives to replace with more efficient motors and in some regions a reduction in the industrial customer base. A consequence of this is that there is more competition for a “shrinking pie”. Service center reaction can be to make a comparable reduction in size or become pro-active and seek new business. The objective of this paper is to suggest and detail some of these alternatives, namely value-added repair and service opportunities for service centers that carry with them the added benefit of contributing to optimizing motor reliability.

The opportunities for value-added repairs and services are ever-increasing. Topics covered here are:

  • Bearing isolators, increased winding wire area, ball-to-roller/roller-to-ball bearing conversions
  • Preventive and predictive maintenance (PM & PdM) services: vibration analysis, condition monitoring, bearing lubrication, electrical testing (IR, amps, volts, kW)
  • Motor management
  • New premium efficient motors vs. repair and retrofitting of existing motors

Available Downloads

Variedad de fugas de aceite y explicación de las opciones de reparación

Variedad de fugas de aceite y explicación de las opciones de reparación

Dale Hamil
Illinois Electric Works

En las máquinas lubricadas con aceite, las fugas son una condición frecuente y difícil de diagnosticar y de solucionar. Debido a problemas de diseño, incluso pueden existir unas pocas máquinas en las cuales las fugas de aceite simplemente forman parte del paisaje y no se pueden corregir sin realizar grandes modificaciones.

Available Downloads

Variety of oil leaks and repair options explained

Variety of oil leaks and repair options explained

Dale Hamil
Illinois Electric Works

In oil-lubricated machines, leaks are a frequent and difficult-to-diagnose and correct condition. Due to design issues, there may even be a few machines where oil leaks are simply part of the landscape and not correctable without major modifications.

Hint:  As final proof during no-load testing, place plastic coated Kraft paper (see Figure 2), plastic side down, under the motor on each end.  Even a single drop of oil will be clearly visible on the paper that may be otherwise missed. Any oil drips should be investigated and fully resolved before shipping.

Available Downloads

V-belt drives: Common problems and their solutions

V-belt drives: Common problems and their solutions

Tom Bishop, P.E.
EASA Senior Technical Support Specialist

Two common scenarios that service centers deal with regarding belt drive applications are failure of a motor drive end ball bearing or breakage of the shaft at the drive end bearing shoulder. The cause of these failures often is over-tensioning of the v-belts. However, there are many other faults or undesirable practices that can lead to premature bearing failure, belt wear and sheave wear. 

Due to practical space limitations, this article won’t be exhaustive in its coverage but will deal with common scenarios other than motor bearing failure and shaft breakage.

Vertical Bearing Systems and Setting End Play

Vertical Bearing Systems and Setting End Play

This presentation looks at various configurations of vertical motor thrust bearing arrangements. It focuses on the reason for having or not having end play, what that end play should be and how to get there. Some pitfalls of setting end play such as internal bearing clearance, spring loaded bearings and back-to-back bearing sets also are examined.

Target audience: This presentation is most useful for service center and field technicians, service center managers, and engineers involved in the disassembly and reassembly of vertical motors with thrust bearings.

Vertical Machines with Spherical Roller Thrust Bearings

Vertical Machines with Spherical Roller Thrust Bearings

Chuck Yung
EASA Senior Technical Support Specialist

One aspect of our repair industry that seems to cause a lot of confusion is the bearing arrangements of vertical motors. There is quite an assortment of thrust bearing arrangements, and we tend to try to apply the same method for adjusting end play to all of them. That is often a bad idea, so this article will take a closer look specifically at those fitted with a spherical roller thrust bearing and repair tips unique to these designs.

Available Downloads

Vertical Motor Maintenance & Repair

Vertical Motor Maintenance & Repair

Jim Bryan
EASA Technical Support Specialist

Vertical motors are unique in their ability to carry external thrust. The thrust bearings that make this possible require care in assembly and application for optimum service and performance. Oil bath lubrication in vertical motors is critical and must be understood and maintained correctly.

This paper covers:

  • Thrust bearing systems
  • Vertical motor types
  • Types of bearings
  • End play adjustment
  • Lubrication
  • Accessories
  • Assembly cautions

Available Downloads

Vertical Motor Maintenance and Repair

Vertical Motor Maintenance and Repair

This presentations covers:

  • Thrust bearing systems
  • Vertical motor types
  • Types of bearings
  • End play adjustments
  • Lubrication
  • Accessories
  • Assembly cautions

Vertical Motor Operation and Repair

Vertical Motor Operation and Repair

Chuck Yung
EASA Senior Technical Support Specialist

Vertical motors differ from horizontal motors in numerous ways, yet some view them as “just a horizontal motor turned on end.” The obvious differences are the (usually) thrust bearings, with arrangements varying from single- to three-thrust bearings with different orientations suited for specific load, rpm and applications.

Less obvious differences are in the ventilation arrangements, shaft stiffness, degrees of protection and runout tolerances. This session will include:

  • Bearing systems: Single, double or more?, Thrust direction, Angle of contact and rpm, Spherical thrust bearings, hydrodynamic
  • Ventilation and cooling
  • Operating environment, and enclosures: Enclosures (degrees of protection), ODP, TEFC, WPI, WPII (IP equivalents)
  • Oil types and quantity: Bearing load and operating temperature, Consideration of speed, Sizing and adding cooling tubes
  • Runout tolerances and repair methods: Upper bearing housing, Bearing carrier and shaft, Bottom bracket flange, Best practice methods for re-machining

This recording will benefit the service center owner, supervisor, technicians, sales personnel and customer.

Available Downloads

Vertical motors: Bearing configurations and oil leaks

Vertical motors: Bearing configurations and oil leaks

Jim Bryan
EASA Technical Support Specialist (retired)

The bearing construction of a vertical motor determines the definite purpose application of the machine. The difference between a vertical motor and a horizontal motor mounted vertically is the bearing configuration. A vertical motor has thrust bearings, except in the case of some close-coupled pumps; a horizontal motor rarely does. Typically a vertical motor is used to drive a pump and will have a P-base mount without feet. A horizontal motor may have a footed or footless mount with a C or D flange, or no flange. The thrust bearing is usually at the top of the vertical motor and may consist of one or more angular contact bearings, a spherical roller bearing or a hydrodynamic, plate type bearing. The thrust applied by the external load will determine the type and number of bearings used. The thrust may be manifest in upward or downward axial loading or it may be balanced. It is important to correctly apply the thrust bearing configuration to achieve the best service life and performance.

Discussion also covers:

  • Bearings at the top of the motor
  • Vertical motor thrust bearings
  • Special thrust case
  • Potential for oil leaks
  • Preventing condensation


 

Available Downloads

Vertical Turbine Pump Shaft & Bearing Types, Fits and Clearance

Vertical Turbine Pump Shaft & Bearing Types, Fits and Clearance

This presentation covers:

  • Shaft material and specs
  • Shaft coupling types
  • Machining for shafts
  • Bronze, plastic, graphite and cutlass bearing options
  • Bearing clearance concerns and reference data 
  • Bearing housing fits

Target audience: This webinar will benefit service center technicians and supervisors.

Winding & Bearing Temperature Sensing Devices

Winding & Bearing Temperature Sensing Devices

This presentation addresses the topic of a various temperature sensing devices including RTDs, thermostats, thermocouples and thermistors. The advantages of each and the proper application will be covered.

Target audience: This presentation will be most useful for service center sales personnel, engineers, supervisors and managers. The content will be beneficial for moderate through highly-experienced persons.