Facebook Twitter LinkedIn YouTube Menu Search Arrow Right Arrow Left Arrow Down Arrow Up Home Arrow Next Arrow Previous RSS Icon Calendar Icon Warning Icon

How to schedule

To schedule private education for your group, contact:

Dale Shuter, CMP
Meetings & Expositions Manager

+1 314 993 2220, ext. 3335
dshuter@easa.com

1 hour of training

$300 for EASA Chapters/Regions
$400 for member companies
$800 for non-members

How a webinar works

All EASA private webinars are live events in which the audio and video are streamed to your computer over the Internet. Prior to the program, you will receive a web link to join the meeting. 

The presentation portion of the webinar will last about 45 minutes, followed by about 15 minutes of questions and answers.

Requirements

  • Internet connection
  • Computer with audio input (microphone) and audio output (speakers) appropriate for your size group
  • TV or projector/screen

Zoom logo

The Zoom webinar service EASA uses will ask to install a small plugin. Your computer must be configured to allow this in order to have full functionality. Please check with your IT department or company's security policy prior to scheduling a private webinar.

Private Webinars

EASA's private webinars are an inexpensive way to bring an EASA engineer into your service center, place of business or group meeting without incurring travel expenses or lost production time.

Article

Demagnetizing motor shafts to prevent bearing failures

  • October 2005
  • Number of views: 11698
  • Article rating:

Cyndi Nyberg 
Former EASA Technical Support Specialist

There are a number of ways that the shaft of an electric motor can become magnetized in service. The most likely culprit is electric current through the motor and shaft, either from internal dissymmetry, welding or from a variable frequency drive. It can also be caused by electrical faults in the system, or even a lightning strike. 

We of course know that shaft voltages and the associated currents can cause bearings to fail. A typical ball bearing failure from shaft currents is shown in Figure 1. when a shaft is magnetized, it can further lead to bearing failures, unless something is done to elimi­nate the residual magnetism. The first reason for bearing failures is that the residual magnetism can cause shaft currents, which can quickly lead to bearing failures. But in addition, a magnetized shaft will attract bits of metal to the bearings. This reduces bearing life because it damages the bearing surfaces. 

The magnetism in the shaft may be strong enough that a screwdriver that sticks to the shaft. In fact, this is the most simple test to check for a magnetized shaft. 



0Upvote 0Downvote
Print