Electric motor basics: Why are rotors skewed? - ANSI Accredited Standards Developer Information - EASA | The Electro•Mechanical Authority
Facebook Twitter LinkedIn YouTube Menu Search Arrow Right Arrow Left Arrow Down Arrow Up Home Arrow Next Arrow Previous RSS Icon Calendar Icon Warning Icon

ANSI/EASA AR100-2020 cover

ANSI/EASA Standard AR100-2020
ANSI/EASA AR100-2020: Recommended Practice for the Repair of Rotating Electrical Apparatus is a must-have guide to the repair of rotating electrical machines. It establishes recommended practices in each step of the rotating electrical apparatus rewinding and rebuilding processes.

LEARN MORE & DOWNLOAD

Questions?

For information about ANSI/EASA AR100 or questions about the work on this standard, contact:

Mike Howell, PE
EASA Technical Support Specialist
+1 314 993 2220
mhowell@easa.com

ANSI Accredited Standards Developer Information

Electric motor basics: Why are rotors skewed?

  • December 2003
  • Number of views: 19312
  • Article rating: 4.3

Cyndi Nyberg 
Former EASA Technical Support Specialist 

Stator windings in three-phase motors are de­signed to have the amount of flux that the core needs to produce the desired output. The number of turns and size of wire are limited by the core dimensions. However, in the squirrel cage rotor, there are many more variables in the design. One of the variables is the shape of the rotor slot. Many rotor designs are skewed. So, why are ro­tors skewed? 

As the rotor turns, discontinuities on the sur­face of the rotor and stator disrupt the magnetic flux path of the motor. The flux path variation shows up in the form of harmonics that affect the performance of the motor. The difference be­tween the number of stator slots and rotor slots has a significant impact on the harmonics. The motor may be noisy, or there may be stray torques that lower the torque during starting or acceleration. The stator-rotor slot difference is why a motor winding that is redesigned for a dif­ferent speed may have problems, and why it is important to check the stator-slot-rotor-bar com­bination before proceeding with the redesign. 

LOGIN TO VIEW AND DOWNLOAD THE ARTICLE



0Upvote 0Downvote
Rate this article:
4.3
Print


Comments are only visible to subscribers.

EASA Rewind Study cover

The Effect of Repair/Rewinding on Premium Efficiency/IE3 Motors
Tests prove Premium Efficiency/IE3 Motors can be rewound without degrading efficiency.

DOWNLOAD THE FULL RESULTS

BUY PRINTED COPIES

EASA Good Practice Guide

Good Practice Guide to Maintain Motor Efficiency
Based on the 2019 and 2003 Rewind Studies of premium efficiency, energy efficient, IE2 (formerly EF1) and IE3 motors

LEARN MORE & DOWNLOAD