Facebook Twitter LinkedIn YouTube Menu Search Arrow Right Arrow Left Arrow Down Arrow Up Home Arrow Next Arrow Previous RSS Icon Calendar Icon Warning Icon

How to schedule

To schedule private education for your group, contact:

Dale Shuter, CMP
Meetings & Expositions Manager

+1 314 993 2220, ext. 3335
dshuter@easa.com

1 hour of training

$300 for EASA Chapters/Regions
$400 for member companies
$800 for non-members

How a webinar works

All EASA private webinars are live events in which the audio and video are streamed to your computer over the Internet. Prior to the program, you will receive a web link to join the meeting. 

The presentation portion of the webinar will last about 45 minutes, followed by about 15 minutes of questions and answers.

Requirements

  • Internet connection
  • Computer with audio input (microphone) and audio output (speakers) appropriate for your size group
  • TV or projector/screen

Zoom logo

The Zoom webinar service EASA uses will ask to install a small plugin. Your computer must be configured to allow this in order to have full functionality. Please check with your IT department or company's security policy prior to scheduling a private webinar.

Private Webinars

EASA's private webinars are an inexpensive way to bring an EASA engineer into your service center, place of business or group meeting without incurring travel expenses or lost production time.

Article

Mitigating Risk with Insulation Systems

  • September 2021
  • Number of views: 12862
  • Article rating:

Mike Howell
EASA Technical Support Specialist

Relevant standards including IEC 60085 and IEEE 1 have similar definitions for electrical insulating materials (EIM) and electrical insulation systems (EIS). To summarize, EIM are materials suitable for separating conducting parts at different voltages, and EIS are insulating structures containing one or more of these materials.

As with any system, there is an interaction between the materials used, and the insulation system developers take great care to ensure that this interaction does not lead to undesirable outcomes. For example, it is possible for two materials (EIM) classified individually at thermal class H (180°C) to have thermal endurance in a system (EIS) limited to thermal class F (155°C). Far worse outcomes could exist if material compatibility is an issue. At the service center level, our resources are generally insufficient for these types of insulation system development activities. For this reason, two approaches often seen are (1) relying on a third party (e.g., resin manufacturer) to provide a qualified insulation system bill of materials, or (2) applying commonly used materials based on their individual ratings. The first approach is strongly recommended, and the second approach can lead to disaster.

AVAILABLE IN SPANISH

Available Downloads



Print