Facebook Twitter LinkedIn YouTube Menu Search Arrow Right Arrow Left Arrow Down Arrow Up Home Arrow Next Arrow Previous RSS Icon Calendar Icon Warning Icon

How to schedule

To schedule private education for your group, contact:

Dale Shuter, CMP
Meetings & Expositions Manager

+1 314 993 2220, ext. 3335
dshuter@easa.com

1 hour of training

$300 for EASA Chapters/Regions
$400 for member companies
$800 for non-members

How a webinar works

All EASA private webinars are live events in which the audio and video are streamed to your computer over the Internet. Prior to the program, you will receive a web link to join the meeting. 

The presentation portion of the webinar will last about 45 minutes, followed by about 15 minutes of questions and answers.

Requirements

  • Internet connection
  • Computer with audio input (microphone) and audio output (speakers) appropriate for your size group
  • TV or projector/screen

Zoom logo

The Zoom webinar service EASA uses will ask to install a small plugin. Your computer must be configured to allow this in order to have full functionality. Please check with your IT department or company's security policy prior to scheduling a private webinar.

Private Webinars

EASA's private webinars are an inexpensive way to bring an EASA engineer into your service center, place of business or group meeting without incurring travel expenses or lost production time.

Consejos para el Tratamiento con Resina en los Centros de Servicio

Consejos para el Tratamiento con Resina en los Centros de Servicio

Chuck Yung
Especialista Sénior de Soporte Técnico de EASA

Uno de los temas más debatidos en nuestra industria es la comparación- y los procedimientos- de impregnación por presión y vacío (VPI) versus la inmersión y secado en horno. En este artículo, he ampliado la discusión para incluir bobinas semicuradas (B-stage) y el método de goteo (trickle). Los centros de servicio que cuentan con un tanque de VPI resaltarán rápidamente los muchos beneficios del VPI, como un mejor sellado de los devanados y una mejor transferencia de calor entre los conductores de los bobinados y la carcasa para mejorar la disipación de calor.

Los bobinados de pletina (solera/bobinas formadas) y de alambre redondo tienen dos problemas claramente diferentes. Para las máquinas con bobinas de pletina, la penetración de la resina es la mayor preocupación, lo que le brinda una clara ventaja al proceso VPI. En los bobinados de alambre redondo, la inquietud es la retención de la resina.

Available Downloads

Consideraciones para enmascarar superficies y procesos de tratamiento de bobinados

Consideraciones para enmascarar superficies y procesos de tratamiento de bobinados

Mike Howell
EASA Technical Support Specialist

Una de las actividades a realizar menos populares relacionadas con el tratamiento de los bobinados, es la preparación y la limpieza de los ajustes, agujeros roscados y superficies mecanizadas. Muchos centros de servicio invierten tiempo adicional durante la etapa de preparación para minimizar la etapa de limpieza. El enfoque más común para proteger estas superficies durante el tratamiento del bobinado consiste en utilizar compuestos para enmascarar o aerosoles de liberación de película seca.

Durante el último año, el departamento de soporte técnico de EASA ha recibido una serie de consultas por parte de los miembros buscando recomendaciones para reemplazar el producto “Special Masking Compound” de Famous Lubricants’ (ver Figura 1) que actualmente no se encuentra disponible. Se cree en estos momentos que el fabricante tiene la intención de continuar con la producción en el futuro, aunque el plazo se desconoce. Este problema específico conlleva a una pregunta más general: ¿Cuál es una buena práctica para escoger un producto para enmascarar estas superficies?

Available Downloads

Considerations for surface masking and winding treatment processes

Considerations for surface masking and winding treatment processes

Mike Howell
EASA Technical Support Specialist

One of the least popular tasks to perform related to winding treatment processes is preparation and cleanup of fits, threaded holes and machined surfaces. Many service centers invest additional time in the preparation stage so as to minimize the cleanup stage. The most common approach to protecting these surfaces during winding treatment is to utilize masking compounds or dry release sprays.

In the last year, EASA’s technical support staff has received a number of inquiries from members seeking replacement recommendations for Famous Lubricants' “Special Masking Compound” which is currently unavailable. It is believed at this time that the manufacturer intends on continuing production at some point in the future though the time frame is not known. This specific problem leads to a more general question: What is a good practice for choosing a product to mask these surfaces?

Available Downloads

Devanados para motores trifásicos Inverter Duty

Devanados para motores trifásicos Inverter Duty

Tom Bishop, PE
Especialista Sénior de Soporte Técnico de EASA 

Con la llegada de los variadores de frecuencia electrónicos (VFD) de estado sólido a fines de la década de 1980, se descubrió que los bobinados de los motores que funcionaban con VFDs fallaban con más frecuencia que al estar alimentados con la energía convencional (onda sinusoidal). A principios de siglo, los fabricantes de motores habían comprendido mejor cómo los VFD afectaban los devanados del motor, y al igual que los proveedores de materiales electro aislantes habían desarrollado materiales y métodos para mejorar la confiabilidad de los devanados de los motores alimentados con VFDs. El término general para los devanados es "inverter duty (a prueba de inversor)". En este artículo, describiremos los materiales y métodos asociados con los devanados inverter duty. 

Alambre magneto
Antes de que se desarrollara el alambre “spike-resistant (resistente a picos)” a finales de la década de los 90s, una práctica común para bobinar los motores que funcionaban con VFDs consistía en utilizar alambre con un aislamiento más grueso a base de poliéster y algunos de ellos utilizaban películas de aislamiento triples o cuádruples. Estos alambres son muy efectivos cuando se les somete a voltajes de onda sinusoidal o voltajes transitorios intermitentes. Los alambres con aislamiento para trabajo pesado (heavy duty) son efectivos contra el efecto corona (Figura 1) porque la distancia entre los conductores reales es mayor con el aislamiento agregado. Esta mayor separación entre los conductores individuales obliga a que cualquier voltaje que se presente entre los conductores sea menor. Sin embargo, cuando la forma de onda del VFD somete a esfuerzos los alambres, la rigidez dieléctrica de los alambres con aislamiento para trabajo pesado, no es tan efectiva. Los alambres magneto modernos utilizados para motores con inversores tienen mayor capacidad dieléctrica con una vida útil más significativa (Figura 2). También pueden soportar picos de voltaje mejor que el alambre con aislamiento para trabajo pesado, pero con la misma estructura que el alambre magneto estándar. La Figura 3 ilustra el impacto en la vida útil del alambre magneto a medida que aumenta la frecuencia de conmutación de un variador. La vida del alambre con aislamiento de trabajo pesado se ve muy afectada, mientras que la del alambre inverter duty no se acorta por la frecuencia de conmutación. 

Usar alambres con mayor diámetro aumentará el voltaje donde comienza a producirse el efecto corona. Por eso, al rebobinar motores inverter duty puede ser importante utilizar la menor cantidad de alambres más gruesos disponibles. Al contrario, los alambres más delgados tienen menos pérdidas por efecto superficial a frecuencias más altas, como la frecuencia portadora de un variador. El efecto superficial hace que la corriente en un conductor redondo esté cerca de la superficie, y la frecuencia portadora es la velocidad a la que el voltaje de CC se "corta" en segmentos para simular la potencia de una onda sinusoidal. Si la frecuencia portadora es alta, por ejemplo, 12 kHz o más, utilice alambres con diámetros más pequeños si es posible; de lo contrario, considere utilizar alambres más gruesos. 

Llenado de ranura y sistema de aislamiento
Incluso el mejor sistema de aislamiento eventualmente comenzará a fallar, especialmente con el uso de un VFD. Para mayor resistencia eléctrica y mecánica, un diseño típico inverter duty maximizará el llenado de la ranura. Esto aumenta la eficiencia y permite que el motor funcione más frío, y también ayuda a evitar el movimiento de las bobinas que puede romper el aislamiento. Es una buena práctica utilizar amarres en al menos cada 3.ª o 4.ª cabezas de bobina, en el lado conexión y lado opuesto conexión para sujetar aún más el devanado.

Como lo ilustra la Figura 4, el fallo más común de los devanados que funcionan con VFDs ocurre en las primera(s) vuelta(s) conectada(s) al cable de salida, por lo que como protección eléctrica adicional algunos bobinados la primera vuelta de las bobina(s) conectada(s) al cable de salida pueden estar aislada(spaguetti). El aislamiento entre fases está diseñado para separar las bobinas de las diferentes fases. La mayor parte de la magnitud de los picos de voltaje vistos por el devanado se concentra en las bobinas conectadas a los cables de salida. Las vueltas inicial y final de una bobina de alambre redondo pueden estar en contacto y se puede presentar un pico de voltaje entre esos dos alambres adyacentes, así como a través de las bobinas. Debido a que los picos de voltaje pueden alcanzar los 2000 voltios o más, también se debe usar aislamiento de ranura adicional para el voltaje más alto, siempre que no sea necesario reducir la sección del alambre para poder insertar el bobinado en las ranuras. Maximice el aislamiento y utilice separadores en las ranuras y vueltas finales. Un motor que funciona con un VFD normalmente se calienta más que el mismo motor alimentado con una onda sinusoidal. Si la temperatura del devanado es 10°C más alta, la vida térmica útil del aislamiento se reduce a la mitad. El aislamiento Clase H (180 °C) tiene una clasificación de temperatura más alta que los devanados Clase B o F (130 °C o 155 °C), por lo que se puede extender la vida útil del devanado. Cuando el motor funciona a una velocidad inferior a la nominal o base, la disminución del flujo de aire hará que el devanado del motor se caliente más. Por esta razón, es ventajoso un sistema de aislamiento Clase H (180°C). 

Impregnación y barniz
Se debe utilizar un proceso de doble inmersión y horneado. Si está disponible, una mejor alternativa sería sumergir y hornear(dip & bake)seguido de impregnación por presión y vacío (VPI) y luego secar. Asegúrese de seguir las instrucciones del fabricante del barniz/resina en cuanto a la temperatura de precalentamiento del bobinado como támbién la temperatura y el tiempo de curado. Tenga en cuenta que el tiempo de curado no comienza hasta que el devanado se haya calentado a la temperatura mínima de curado recomendada para el barniz/resina. Precaución: La mayoría de los alambres magneto tienen una capa lubricante que se utiliza para facilitar su fabricación. El proceso de precalentamiento del devanado tiene dos propósitos: Primero, evaporar el lubricante del alambre, lo que luego permite que el barniz/resina se adhiera al conductor y el segundo es que ayude a aliviar las tensiones residuales en la película aislante del alambre para que este no se agriete (crazing). 

Técnica de bobinado inverter
Cuando se fabrica o rebobina un motor que funciona con un VFD, se debe tener mucho cuidado al insertar las bobinas en las ranuras para evitar que la película aislante del alambre no se raye ni se pele. Es una buena práctica utilizar papel mylar en las ranuras para ayudar a la inserción de las bobinas y protegerlas de daños. Algunos fabricantes utilizan una técnica de bobinado que hace que quede menos "aleatorio" al alinear el alambre en las ranuras empleando un espaciado más ordenado de las vueltas. La idea es mantener el principio y el final de las bobinas lo más alejados posible entre sí para reducir la magnitud del voltaje entre los conductores adyacentes. Las máquinas bobinadoras semiautomáticas utilizadas en los centros de servicio se acercan a este nivel de espaciado ordenado de las vueltas. 

Especificaciones para bobinados inverter duty
La siguiente es una especificación guía para un sistema inverter duty. 

General 

  • Aislamiento Clase H o superior 

Alambre magneto 

  • Inverter duty 

Sección del conductor 

  • Conserve o aumente la sección transversal 
  • Conserve o aumente el número de alambres (reduce las pérdidas por corrientes parásitas 

Aislamiento 

  • Separadores entre fases 
  • Como mínimo aislamiento a tierra de 0.015” (0.38 mm) 
  • Arriba de 80 voltios por bobina instale separadores en la mitad de cada grupo 

Atado y soporte 

  • Amarre al menos cada tercera o cuarta bobina 
  • Encinte las cabezas con un mínimo de 3 medias capas de de vidrio virgen [1 pulgada (25 mm)] a partir de 1 pulgada (25 mm) del núcleo hasta 1 pulgada de las puntas 

Impregnación 

  • Pre caliente el barníz de acuerdo con las instrucciones del fabricante 
  • Sumerja y cure(dip & bake) dos veces 
  • Cure durante el mayor tiempo recomendado por el fabricante 
  • Note que el tiempo de curado no comienza hasta que el devanado se haya calentado a la temperatura de curado

Available Downloads

How to Construct and Operate a Temporary Bake Oven

How to Construct and Operate a Temporary Bake Oven

This presentation demonstrates an easy-to-build temporary oven that can be constructed in the service center or in site. The recording covers:

  • Materials to use and where to obtain
  • Heating: electric, propane, or other?
  • Measuring winding temperature
  • Regulating oven temperature
  • Storage of the parts when not in use
  • Safety concerns and cautions

Target audience: This presentation will benefit service center supervisors and management.

How To Wind Three-Phase Stators (Version 2)

How To Wind Three-Phase Stators (Version 2)

Self-paced, interactive training for stators 600 volts or less

This EASA software is a valuable interactive training tool ideal for training your novice(s). Even experienced winders will learn from it. The CD teaches how to wind in a richly detailed, step-by-step approach. It includes narrative, animations and video clips, with tests to assess student comprehension. The training, which is divided into 13 lessons, covers data taking, core testing, coil cutoff, burnout, stripping, core preparation, coil making, stator insulation, coil insertion, internal connections, lacing and bracing, inspection and test of untreated and treated windings, and winding treatment. Features include "Pro Tips" and "Drill Downs" that enhance the learning experience and assure that even the most experienced technician will learn from this product. The course is delivered as an interactive Adobe PDF file containing text, audio, video, supporting documents and quizzes.

LEARN MORE

Inverter Duty Three-Phase Motor Windings

Inverter Duty Three-Phase Motor Windings

Tom Bishop, PE
EAS A Senior Technical Support Specialist 

With the advent of solid-state electronic variable frequency drives (VFDs) in the late 1980s, it was found that the windings of motors used on VFDs failed more frequently than when powered by a utility (sine wave) supply. By the turn of the century, motor manufacturers had gained a better understanding of how VFDs affected motor windings, and motor manufacturers and suppliers of winding materials had developed materials and methods to improve the reliability of motor windings supplied from VFDs. The general term for the windings is “inverter duty.” In this article, we will describe the materials and methods associated with inverter duty windings.

Available Downloads

Mitigando El Riesgo En Los Sistemas De Aislamiento

Mitigando El Riesgo En Los Sistemas De Aislamiento

Mike Howell
Especialista de Soporte Técnico de EASA

Diferentes normas relevantes incluyendo la IEC 60085 y la IEEE 1 definen de forma similar los materiales electro aislantes (EIM) y los sistemas de aislamiento eléctrico (EIS). Resumiendo, los EIM son materiales idóneos para separar las partes conductoras a diferentes voltajes y los EIS son estructuras aislantes que contienen uno o más de estos materiales.

Como en cualquier sistema, existe una interacción entre los materiales usados y los diseñadores de los sistemas de aislamiento cuidan todos los detalles para evitar que esta interacción produzca resultados indeseados. Por ejemplo, es posible que dos materiales (EIM) clasificados individualmente como clase H (180ºC) tengan vida térmica en un sistema (EIS) limitado a una clase térmica F (155ºC).

Available Downloads

Mitigating Risk with Insulation Systems

Mitigating Risk with Insulation Systems

Mike Howell
EASA Technical Support Specialist

Relevant standards including IEC 60085 and IEEE 1 have similar definitions for electrical insulating materials (EIM) and electrical insulation systems (EIS). To summarize, EIM are materials suitable for separating conducting parts at different voltages, and EIS are insulating structures containing one or more of these materials.

As with any system, there is an interaction between the materials used, and the insulation system developers take great care to ensure that this interaction does not lead to undesirable outcomes. For example, it is possible for two materials (EIM) classified individually at thermal class H (180°C) to have thermal endurance in a system (EIS) limited to thermal class F (155°C). Far worse outcomes could exist if material compatibility is an issue. At the service center level, our resources are generally insufficient for these types of insulation system development activities. For this reason, two approaches often seen are (1) relying on a third party (e.g., resin manufacturer) to provide a qualified insulation system bill of materials, or (2) applying commonly used materials based on their individual ratings. The first approach is strongly recommended, and the second approach can lead to disaster.

Available Downloads

Resin curing issues and preventing future problems

Resin curing issues and preventing future problems

Sample tank resin regularly and follow manufacturer’s corrective suggestions

Chuck Yung
EASA Senior Technical Support Specialist

Have you ever had a curing issue with your DAP monomer (diallyl-phthalate ) solventless resin (hereafter referred to as resin for simplicity)? If you haven’t, read on for guidance on preventing issues in the future. If you have, this article provides guidance on correcting the issues as well. 

As expensive as resin is, all service centers should be diligent about the care of their resin dip tank and VPI (vacuum pressure impregnation) systems.

Available Downloads

Resin Treatment Tips for Service Centers

Resin Treatment Tips for Service Centers

Chuck Yung
EASA Senior Technical Support Specialist

One of the most briskly debated issues in our industry is the comparison – and procedures for – vacuum pressure impregnation (VPI) versus dip & bake. For this article, I have expanded the discussion to include trickle epoxy and B-stage coils. Service centers that have a VPI tank will quickly point out the many benefits of VPI, such as better sealing of the windings and improved heat transfer from the winding conductors to the frame for enhanced heat dissipation.

Form and random windings have two distinctly different issues. For the form-wound machine, resin penetration is the biggest concern – giving a clear advantage to a VPI process. For random windings, the concern is retention of the resin.

Available Downloads