Facebook Twitter LinkedIn YouTube Menu Search Arrow Right Arrow Left Arrow Down Arrow Up Home Arrow Next Arrow Previous RSS Icon Calendar Icon Warning Icon

How to schedule

To schedule private education for your group, contact:

Dale Shuter, CMP
Meetings & Expositions Manager

+1 314 993 2220, ext. 3335
dshuter@easa.com

1 hour of training

$300 for EASA Chapters/Regions
$400 for member companies
$800 for non-members

How a webinar works

All EASA private webinars are live events in which the audio and video are streamed to your computer over the Internet. Prior to the program, you will receive a web link to join the meeting. 

The presentation portion of the webinar will last about 45 minutes, followed by about 15 minutes of questions and answers.

Requirements

  • Internet connection
  • Computer with audio input (microphone) and audio output (speakers) appropriate for your size group
  • TV or projector/screen

Zoom logo

The Zoom webinar service EASA uses will ask to install a small plugin. Your computer must be configured to allow this in order to have full functionality. Please check with your IT department or company's security policy prior to scheduling a private webinar.

Private Webinars

EASA's private webinars are an inexpensive way to bring an EASA engineer into your service center, place of business or group meeting without incurring travel expenses or lost production time.

Article

Keeping it cool: A look at causes of motor overheating

  • March 2015
  • Number of views: 15842
  • Article rating:

Much has been written in EASA publications and elsewhere about the consequences of excessive temperature on a motor’s performance. We know that excessive temperature and moisture are the largest contributors to bearing and winding failures. Understanding the source of the increased temperature will help us to correct the problem and improve the machine’s life expectancy.

A chart included in this article illustrates the theoretical impact of increased temperature on the life of the motor insulation system. This chart only addresses the impact of thermal aging and not various other conditions that will affectthe motor’s life. In other words, it says that for every 10ºC increase in operating tem-perature, the expected life is reduced by one-half. Conversely, if we can re-duce the temperature of the motor by 10ºC, we can expect the life to double. Note that this is true at any point on the curve. However, there is the rule of diminishing returns: at some point the cost of designing and operating a motor to run cooler out-weighs the benefts of doing so.  Here we will explore some of the factors that con-tribute to increased temperature.

Topics covered include:

  • Overload
  • Ventilation
  • Voltage
  • Electrical steel (core iron)
  • Current density
  • Circulating currents
  • Harmonics

Available Downloads



Print