Facebook Twitter LinkedIn YouTube Menu Search Arrow Right Arrow Left Arrow Down Arrow Up Home Arrow Next Arrow Previous RSS Icon Calendar Icon Warning Icon

How to schedule

To schedule private education for your group, contact:

Dale Shuter, CMP
Meetings & Expositions Manager

+1 314 993 2220, ext. 3335
dshuter@easa.com

1 hour of training

$300 for EASA Chapters/Regions
$400 for member companies
$800 for non-members

How a webinar works

All EASA private webinars are live events in which the audio and video are streamed to your computer over the Internet. Prior to the program, you will receive a web link to join the meeting. 

The presentation portion of the webinar will last about 45 minutes, followed by about 15 minutes of questions and answers.

Requirements

  • Internet connection
  • Computer with audio input (microphone) and audio output (speakers) appropriate for your size group
  • TV or projector/screen

Zoom logo

The Zoom webinar service EASA uses will ask to install a small plugin. Your computer must be configured to allow this in order to have full functionality. Please check with your IT department or company's security policy prior to scheduling a private webinar.

Private Webinars

EASA's private webinars are an inexpensive way to bring an EASA engineer into your service center, place of business or group meeting without incurring travel expenses or lost production time.

AC Motor Verification and Redesign and Motor Rewind Data Version 4 programs work together to offer more capabilities

AC Motor Verification and Redesign and Motor Rewind Data Version 4 programs work together to offer more capabilities

Gene Vogel
EASA Pump & Vibration Specialist

New features in the EASA AC Motor Verification and Redesign – Version 4 (ACRewind) program enhance the ability for members to submit data electronically for inclusion in EASA’s Motor Rewind Data – Version 4 (MotorDB) program. Jump to the section below on “enhancements” if you’re already familiar with these programs and how they work. 

The Version 4 software is a powerful set of tools for members to check the validity of winding data and to redesign windings from concentric-to-lap and for changes in motor performance. A key feature of this latest version of the program is the integration of the MotorDB with the ACRewind program. The availability of both program functions within a common user interface provides more than just convenience. The ability of the programs to share data resources creates new capabilities that the stand-alone version of the program could not.

Available Downloads

Bring your website up to modern standards

Bring your website up to modern standards

Kelley Fujino
Lubbock Electric Co.

The business-to-business (B2B) buyer’s journey has changed dramatically in recent years. Is your company prepared for today’s independent and digitally-empowered business buyer? The B2B buying process is becoming longer because the majority of buyers are spending more time in the research phase to evaluate products and services. What’s more, they are relying less on salespeople in this phase.

According to 2017 research from Forrester, 60% of B2B buyers prefer not to communicate with sales representatives as their primary information source. Increasingly, they are looking to digital media. In a 2014 survey of 3,000 B2B decision makers, Google discovered that 89% of B2B purchasers use the internet during their research process and that 71% of B2B researchers begin with a generic search. Further, B2B purchasers were found to do an average of 12 searches before engaging a specific company’s website.

In light of this data, I wanted to see how prepared EASA members are for today’s B2B buyer.

Available Downloads

EASA Winding Database and Verification and Redesign Program: An Easy-to-Use Solution When Faced with Bare Core Winding Challenges

EASA Winding Database and Verification and Redesign Program: An Easy-to-Use Solution When Faced with Bare Core Winding Challenges

Gene Vogel
EASA Pump & Vibration Specialist

The EASA AC Motor Verification & Redesign - Version 4 software (ACR-MotorDb) is a powerful tool for service centers providing the capability to meet their customer’s needs for AC stator and wound rotor redesigns. In most cases, the data from the existing winding is recorded when that winding is removed from the core. But occasions arise where that original data is not available; it may have been recorded incorrectly or a different service center may have stripped the core but not completed the repair. In those cases, the service center must come up with a new “bare core” winding design. ACR-MotorDb has some specific features to address this need.

LEARN MORE ABOUT THE SOFTWARE

HOW TO CALCULATE A WINDING FROM A BARE CORE

The MotorDb segment of the program is the EASA Winding Database compiled over decades from winding data submitted by EASA members. With over 300,000 winding records, it is likely that windings similar to the original winding are available in MotorDb. By simply searching the database for the core dimension criteria, a list of prospective matching windings is returned. A winding from the database does not have to match the original motor nameplate exactly to be used as basis for the bare core design. When a matching winding is selected, that data can be automatically transferred to the Redesign program where modifications needed to match the desired criteria can be adjusted. The process is smooth, effortless and accommodates most 3 phase induction motor windings.

The first step is to display a list of prospective windings that closely match the bare core dimension criteria. Enter the core length, bore diameter, number of slots and poles into the MotorDb search dialog box. As an example, we will search for a 12” core length, 14” bore diameter and 72 slots for a 125 HP, 6 pole Marathon motor. Initially enter only the core dimensions, number of slots and number of poles (Figure 1); the Get Count feature will quickly return the number of matching records. If the result is about 50 or fewer motors, click OK to retrieve those records into a spreadsheet format where the records can be sorted by columns and reviewed. If the Record Count is too large, enter additional criteria to narrow the search. For our example, 44 records were found, and the resulting spreadsheet is illustrated in Figure 2.

The spreadsheet can be sorted by columns to easily review the data. It is useful to sort by the AirDensity (AGD) and Power (Pwr) columns to assess if the bare core is a good candidate for the desired resulting winding. If there are several windings with the desired power rating and the AGD is within acceptable limits, there is assurance the redesign will be successful. For our example, there are 16 windings rated at 125 HP and 10 of them are Marathon motors. So, in this example, it is likely original factory data is available. Of course, that is not always the case. Suppose our bare core is a Siemens motor, which is not listed. We can still select a different manufacturer winding as the basis for our bare cored design. Select one of the windings from the spreadsheet that matches the desired nameplate data as closely as possible. The full winding data will be displayed in an editor (Figure 3).

This original data record was in the database so no redesign was necessary; the bare core can be wound directly from the database record. Such is not always the case, and the EASA software has a function in MotorDb to transfer data from a MotorDb winding record to ACR for redesign. The Send to ACR function in MotorDb creates a new record in ACR where all the ACR redesign functions are available. Taking our example motor, suppose the desired winding is 575 Volts. MotorDb records are only 230 or 460 Volts.

Figure 4 illustrates a MotorDb record sent to ACR and the Volts redesigned from 460 Volts to 575 Volts. The winding is redesigned for 575 Volts and the connection was changed from 6Y to 3Y to keep the Volts per Coil within acceptable limits (Figure 5).

The combination of the EASA Winding Database and the Verification and Redesign program is an easy-to-use solution when presented with bare core winding challenges. For complete step-by-step instructions on bare core redesign, view the tutorial video How to calculate a winding from a bare core available at go.easa.com/wbc.

Available Downloads

Encourage (Proper) Use of Mobile Devices in the Service Center

Encourage (Proper) Use of Mobile Devices in the Service Center

Mike Howell
EASA Technical Support Specialist

There are plenty of generic mobile device policies floating around the web. Sadly, many of them focus heavily and narrowly on the disadvantages of team members having personal devices at their workstations. Depending on the particular environment and tools used, it is both reasonable and responsible to evaluate the potential risks to safety and security. Too often, though, organizations take the path of excluding mobile devices from the work area because it’s easy rather than reaping the benefits they offer.

Available Downloads

Five Ways easa.com Can Help Your Business!

Five Ways easa.com Can Help Your Business!

By Justin Hatfield
Marketing & Industry Awareness Committee Member
HECO

How much time have you spent at easa.com? There are a lot of valuable resources that are avaliable to you as an EASA member that you can use today!

  1. Training – Not only can you use easa.com to book a training class that you or your employees can attend, but there is a ton of archived content located in the “Resources” tab that you can use to train your team today! You can easily conduct a search on a term and see content that is available on that topic. I did a search and simply put “winding” in the search box. This brought up 307 different pieces of information. These varied from articles, videos and webinar recordings. One piece of information was a seven minute video called “Performing an Insulation Resistance Test” – what a great training tool to use with new technicians in your shop! Remember, this information is all included with your membership, so it doesn’t cost you a dime more!
  2. Technical Support – One of the easiest ways to get technical support from an EASA engineer is to use easa.com. Right in the middle of the homepage is a button labeled “Technical Support.” If you click that button, you can easily get to a page with great technical resources, including an orange button to “Submit a Technical Inquiry.” Simply click on “Submit a Technical Inquiry,” explain why you are asking for help and an EASA engineer will be in touch as soon as possible! This is a great resource that you can use to upload pictures and other details that will help the EASA engineer understand the whole picture of what you are encountering.
  3. Marketing Content – Want to be more involved with marketing but don’t have the time to make content to post? It’s easa.com to the rescue! In the Electromechanical Resource Center at easa.com, you have a variety of useful information that you can use as part of your marketing efforts. This information ranges from studies EASA has performed, the EASA/ANSI AR100 Standard, alignment information and much more. This information is at your disposal to use to help promote your business. Just be sure to credit EASA on the post! :)
  4. Find Specialty Help – None of us can do everything and when those situations arise, consider going to easa.com to find a member that can help you with what you need. Maybe you need to use a larger burn off oven, a specialty servo motor or whatever the reason; you can visit easa.com’s “Find a Member” section and search for an active EASA member who can help you. Using the neat “Advanced Search” options, you can filter down to members that can help you with exactly what you need. I’ve used this a number of times for help over the years, and I’ve found that EASA members are great at helping each other out!
  5. Find a Vendor – In the same “Find a Member” section of easa.com, you can search for Associate Members. These are members of EASA who are our vendors. You can search for “seal” or “coil” or whatever you are looking for, and if the vendor has the word in their description, they will pop right up. A search on the term “bearing” brought up 19 different potential vendors to help a member with a need. Their contact information is right there on the same screen, so you can reach out to see if they can help you.

As you can see, there are a lot of ways in which easa.com can help your business. Did you know that you can give each of your employees access to the website? If you aren’t sure how to do this, give EASA Member Services a call at +1 314 993 2220 or email easainfo@easa.com, and they will be happy to help you out!

Also, keep in mind that none of the things I’ve mentioned in this article cost you a dime extra. They are included in your EASA membership!

Fomente el Uso (Adecuado) de Dispositivos Móviles en el Centro de Servicio

Fomente el Uso (Adecuado) de Dispositivos Móviles en el Centro de Servicio

Por Mike Howell
Especialista de Soporte Técnico de EASA

Existen muchas políticas genéricas sobre el uso de los dispositivos móviles flotando en internet. Lamentablemente, muchas de ellas se centran en gran medida y de forma limitada en las desventajas de que los empleados tengan dispositivos personales en sus estaciones de trabajo. Dependiendo del entorno particular y de las herramientas utilizadas, es razonable y responsable evaluar los riesgos potenciales para la seguridad y la protección. Sin embargo, con mucha frecuencia, las organizaciones toman el camino de excluir los dispositivos móviles del área de trabajo porque es una medida fácil, en lugar de aprovechar los beneficios que ofrecen.

Instalando o Transfiriendo el Software de AC Motor Verification and Redesign (ACR) de EASA

Instalando o Transfiriendo el Software de AC Motor Verification and Redesign (ACR) de EASA

Gene Vogel
Especialista de Bombas & Vibraciones de EASA

Periódicamente, los miembros deberán actualizar los sistemas informáticos con el programa de software ACR instalado. El procedimiento para mover el programa a una nueva computadora depende de la versión instalada actualmente. A principios de 2022, se lanzó una actualización con una estructura de base de datos modificada, y la instalación de la actualización incluyó una reestructuración automática de las tablas de datos para el historial de motores rediseñados de los miembros. Por lo tanto, si la instalación actual de un miembro no se ha actualizado, el procedimiento para mover el programa a una nueva computadora incluirá la actualización y los cambios automáticos en la tabla de datos.

Al mover el programa a una nueva computadora en todos los casos, se recomienda descargar una nueva copia del archivo de instalación del programa desde el sitio web de EASA, easa.com. Los miembros deben iniciar sesión en su cuenta con sus credenciales de EASA y hacer clic en la pestaña My Account en la parte superior de la página. Luego, los miembros deben seleccionar el elemento Descargas en el medio de esa página. Se mostrará una lista de los productos descargables de EASA. Seleccione “AC Motor Verification & Redesign - Ver. 4 (Windows) - Download” de la lista. El archivo de instalación del programa se descargará en su computadora. Si el programa no está en la lista, comuníquese con nosotros con respecto a la compra del programa. La descarga del archivo de instalación del programa también se puede encontrar buscando "Update" en la página de inicio de EASA y seleccionando “Important Software Update” en los resultados. Por supuesto, debe iniciar sesión con sus credenciales de EASA.

En la nueva computadora, asegúrese de que los archivos del programa ACR, C:\Program Files\ MotorDB, no estén en el nuevo disco duro. (Es posible que el programa se haya movido de la computadora anterior si los archivos se transfirieron desde la antigua computadora). Los archivos de datos del programa se deben copiar de la computadora anterior al nuevo disco duro, así que mueva C:\Users\LoginName\Documents\carpeta EASA Winding Data al nuevo disco duro. Si esta carpeta no está en la computadora anterior, puede haber una versión muy antigua del programa con los archivos y datos del programa en la carpeta C:\ Users\LoginName\Documents\AcRedesign. En cualquier caso, copie la carpeta completa en el nuevo disco duro de la computadora en la misma ubicación. Con los archivos de datos del programa copiados en el nuevo disco duro, la nueva computadora está lista para la instalación del programa. Nota: Si no desea tener el historial de motores rediseñados de los miembros de EASA en la nueva computadora, simplemente omita la transferencia de los archivos de datos al nuevo disco duro.

El siguiente paso es ejecutar el programa de instalación que se descargó del sitio web de EASA; simplemente haga doble clic en el archivo para iniciar la instalación. El programa le solicitará el nombre de su empresa y su número de miembro de EASA. Por favor utilice su número de miembro de EASA. Se le pedirá sus “directories for databases”; se recomienda utilizar las ubicaciones predeterminadas. Póngase en contacto con el soporte técnico de EASA si es necesario utilizar ubicaciones alternativas del directorio de datos.

Además, en este cuadro de diálogo rápido hay una selección para “Start with no custom motors” o “Transfer existing motors from previous version". Si los archivos de datos han sido copiados desde la computadora anterior, seleccione “Transfer existing motors from previous version” y asegúrese de que el campo “previous ACR database” apunte a la ubicación correcta. Si la base de datos anterior es de una versión antigua aparecerá una pantalla de texto a medida que se copian y reestructuran los registros. La instalación debería entonces continuar; cuando se complete, aparecerá un mensaje con opciones para “Create a desktop icon” y “Run the EASA program”.

Si el programa no se ejecuta cuando finaliza la instalación, inícielo manualmente desde el icono o desde el menú del programa de Windows; habrá una carpeta EASA en el menú del programa de Windows. Cuando el programa arranca, buscará una conexión a Internet para verificar las actualizaciones y la base de datos. Si encuentra una conexión a Internet, el programa puede reiniciarse una o dos veces a medida que se instalan las actualizaciones; tenga paciencia, ya que esto puede demorar varios minutos según la velocidad de la conexión a Internet.

Cuando el programa haya terminado de instalar las actualizaciones, aparecerá la pantalla de bienvenida. Si sus usuarios no están familiarizados con el funcionamiento del programa, los tutoriales disponibles en la pantalla de bienvenida son un excelente recurso. Existen disponibles tutoriales para el funcionamiento básico del software, búsquedas en bases de datos de motores, uso de la cuadrícula de selección y para efectuar rediseños básicos. Incluso los usuarios experimentados pueden encontrar útiles estos tutoriales. Para acceder a las funciones del programa, cierre la pantalla de bienvenida haciendo clic en la X junto a Bienvenida en la pestaña de la parte superior.

Sugerencia: El programa incluye una base de datos de clientes para que cada motor rediseñado pueda etiquetarse con un cliente específico. Es útil si los clientes habituales se configuran con anticipación para que los usuarios puedan seleccionarlos de la lista en lugar de escribir el nombre del cliente cada vez que se use. Esto también ayuda a evitar que un cliente se ingrese varias veces con diferentes nombres. Seleccione el elemento Database->Custome del menú para acceder a la base de datos de clientes.

Si encuentra algún problema durante el proceso de instalación del programa, comuníquese con el Soporte técnico de EASA. Además, el programa tiene opciones para usar la base de datos local o en línea de bobinados de motores, que es diferente de la base de datos del historial de motores rediseñados de los miembros, y opciones para la transferencia automática de datos de motores rediseñados a EASA. Para obtener recomendaciones sobre cómo cambiar su configuración predeterminada, comuníquese con el Soporte técnico de EASA.

Si necesita ayuda para transferir o instalar este software puede contactar con el soporte técnico de EASA

*Horas laborales de EASA: Lunes a Viernes, 8 a.m. – 4:30 p.m. Hora Central de USA,  Para recibir asistencia, deberá proporcionar el número de identificación de su empresa. Todas las consultas se responden en el orden de llegada de las mismas.

Available Downloads

Installing or Transferring the EASA AC Motor Verification and Redesign (ACR) Software

Installing or Transferring the EASA AC Motor Verification and Redesign (ACR) Software

Gene Vogel
EASA Pump & Vibration Specialist

Periodically, members will need to update computer systems with EASA's AC Motor Verification & Redesign (ACR) software program installed. The procedure for moving the program to a new computer depends on the version of the currently installed program. Early in 2022, an update was released with a modified database structure, and installation of the update included an automatic restructuring of the data tables for members’ redesigned motor history. Therefore, if a member's current installation has not been updated, the procedure for moving the program to a new computer will include the update and automatic data table changes.

When moving the program to a new computer in all cases, it is recommended that a new copy of the program installation file be downloaded from the EASA website, easa.com. Members should log in to their website account with their EASA credentials and click the My Account tab at the top of the page. Members should then select the Downloads item in the middle of that page. A list of the EASA downloadable products will be displayed. Select “AC Motor Verification & Redesign - Ver. 4 (Windows) - Download” from the list. The program installation file will be downloaded to your computer. If the program is not listed, contact EASA Member Services regarding your purchase of the program. The download for the program installation file can also be found by searching for “Update” from the EASA home page and selecting “Important Software Update” from the results. Of course, you must be logged in with your EASA credentials.

On the new computer, be sure the ACR program files, C:\Program Files\MotorDB, are not on the new hard drive. (The program may have been moved from the old computer if files were transferred from the old computer.) The program data files should be copied from the old computer to the new hard drive, so move the C:\Users\LoginName\Documents\EASA Winding Data folder to the new hard drive. If this folder is not on the old computer, a very old version of the program may have the program data files in the C:\Users\LoginName\Documents\AcRedesign folder. In either case, copy the entire folder to the new computer hard drive in the same location. With the program data files copied to the new hard drive, the new computer is ready for the program installation. Note: If there is no desire to have the members’ redesigned motor history on the new computer, then simply skip transferring the data files to the new hard drive.

The next step is to run the install program that was downloaded from the EASA website; simply double-click the file to start the installation. The program will prompt for your Company Name and your EASA Member Number. Please use your EASA Company Member Number. You will be prompted for your “directories for databases”; it is recommended that the default locations be used. Please contact EASA Technical Support if there is a need to use alternate data directory locations.

Also, on this prompt dialogue there is a selection to “Start with no custom motors” or “Transfer existing motors from previous version.” If data files have been copied from the old computer, select “Transfer existing motors from previous version” and be sure the “previous ACR database” field points to the correct location. If the old database is from an older version, a text screen will display as the records are copied and restructured. The installation should then continue; when complete, a prompt will appear with options to “Create a desktop icon” and to “Run the EASA program.”

If the program does not run when the installation completes, start the program manually from the icon or from the Windows program menu; there will be an EASA folder in the Windows program menu. When the program initially starts, it will look for an internet connection to check for program and database updates. If an internet connection is found, the program may restart one or two times as updates are installed – be patient as this may take several minutes depending on internet connection speed.

When the program has finished installing updates, the Welcome screen will be displayed. If your users are not familiar with the program operation, the Tutorials available from the Welcome screen are an excellent resource to get them going. Tutorials for Basic Software Operation, Motor Database Searches, Using the Selection Grid and doing Bare Core Redesigns are available. Even experienced users may find these tutorials helpful. To access the program features, close the Welcome screen by clicking the X next to Welcome on the tab at the top.

Tip: The program includes a Customer database so that each redesigned motor can be tagged to a specific member Customer. It is helpful if frequently used Customers are set up ahead of time so that users can select them from the list rather than typing the Customer name each time. This also helps to prevent a Customer from being entered multiple times with various spellings. Select the Database->Customer item from the menu to access the Customer database.

If any problems are encountered during the program installation process, please contact EASA Technical Support for assistance. Also, the program has options for using the Online or Local Motor Winding Database, which is different from the members’ redesigned motor history database, and options for the automatic transfer of redesigned motor data to EASA. For recommendations on changing these from their default setting, contact EASA Technical Support.

You may contact EASA technical support if you need help installing or transferring this software

*EASA business hours: 8:00 a.m. – 4:30 p.m. Central, Monday through Friday. You must include your company ID number when you submit an inquiry. All technical support requests are handled in the order received.

 

Available Downloads

Management Tip: Eight Cybersecurity Reminders

Management Tip: Eight Cybersecurity Reminders

Greg Priest
Management Services 
Committee Member
Priest Electric

In today’s world of electronic communication and banking, it’s always good to review cybersecurity reminders. Following are eight to keep in mind:

  1. Update Your Software. Whether you are on iOS, Windows or Android, you need to make sure you have updated your operating system to include all the latest “fixes.”  This will protect you from the most common attacks and keep your system prepared to defend itself without your human input.
  2. Two-Factor Identification. Any sensitive accounts, like banking, should force you to have two-factor identification already set up. This is the second set of credentials you need to change any password or even login.
  3. Back Up Your Data.  This is not difficult in our world of cloud computing; you can have this set up to automatically back up in the background. Best practices are that your backup is not stored at your work site. Pay for cloud service with secure storage facilities. They will even have a backup of your backup.
  4. No Public Wi-Fi.  While you think that a coffee shop’s free Wi-Fi is secure, or a random computer is willing to share internet access, don’t do it. 
  5. Limit What You Share on Social Media. I know, we’re proud of our accomplishments. But there are entire businesses that scrape your public information and use it. We recently had to get rid of our “About” page on our business site, as criminals were scraping that information and trying to set up accounts in our business name by posing as customers and potential customers.
  6. No Online Use of Debit Cards. While your debit card holding bank will tell you they are secure and will refund any fraud, read the customer agreement. Debit cards work too fast and immediately take money from your checking account; the dispute process is not resolved quickly. Credit cards are intentionally slow; disputes will put the burden on the merchant to prove payment legitimacy, and you have the benefit of keeping your money until resolution.
  7. Suspicious Emails Are the Worst.  This could be its own subject as there are so many ways criminals are trying to get to us. Never download an attachment unless you are sure of the sender. Let’s review the most common scams:
    • Spoofing a Forged Email Address. It often looks like it’s from yourself, or a bank or any legitimate company. Upon review of the actual email address, it does not match its label. This will often get around your spam filter.
    • Phishing is Likely Combined on Top of Spoofing. Often it will look like a bank email but then “fish” for your information. It will ask you to use their link in the email to log-in to their website. Phishing emails can be “baited” as well. For example, fraud detected on your bank account, log-in here. Or a positive bait: confirm your reward, enter your information here. Don’t take the bait!
    • Smishing is the Same Thing as Above but Comes in a Text Message. This is phishing combined into a SMS text message, so the internet has crowned it Smishing. It works the same way. Set the bait (you’ve won something) and click here. Then the sender tries to reel you in.
  8. Scan With an Anti-Virus Application. You may have caught a tracker or virus by accident.  If things aren’t behaving normally on your system, you can check it out. There is one big rule when it comes to anti-virus applications; you seek it out on your own.  There are many good apps that can help, but they never come to you;  you must go to their legitimate website and download.  Even if you’ve used their services before, never use an email link, ad or pop-up for anti-virus. See phishing above.

While these tips cannot protect you from all online threats, they are a great start. When in doubt, do your homework and due diligence. If you have any doubts about that email, just delete it. Happy computing.

Motor Stats Feature to be Released for AC Motor Verification & Redesign (and Motor Rewind Data)

Motor Stats Feature to be Released for AC Motor Verification & Redesign (and Motor Rewind Data)

Mike Howell, PE
EASA Technical Support Specialist 

Many inquiries submitted to EASA technical support staff require a review of as-found winding data of three-phase machines to determine if the data is reasonable for the machine’s nameplate ratings and core size. The most common approach for accomplishing this review is to compare the as-found winding data to existing data from similarly rated and sized machines in EASA’s motor rewind database. If several existing records are very similar to the as-found data, especially from the same manufacturer, the review is straightforward. Other times, an inference, or educated guess is required. EASA will soon be releasing a new Motor Stats feature for both the AC Motor Verification & Redesign and Motor Rewind Data software to assist with the educated guesses.

Esson’s Rule
For well over a hundred years, one of the fundamental relationships used by manufacturers when sizing electric machines relates torque to rotor volume. This is often referred to as Esson’s Rule and can be written as follows 

P / N = C0 x D2L

where P is the mechanical power, N is the rotor speed, and C0 is referred to as the output coefficient. For our purposes, it is important to note that the output coefficient (C0) depends in part on the magnetic flux density in the air gap, a value calculated for each machine in the motor rewind database. And, as shown in Figure 1, D is the rotor outside diameter and L is the rotor core length. 

It is reasonable when comparing machines to use stator inside diameter and stator core length in place of rotor outside diameter and rotor core length. Also, we typically use pole count in place of rotor speed, understanding that nameplate rated frequency differences must be considered. 

So, the inference we make using the motor winding database is that machines having similar mechanical power, pole count (and frequency), core length and stator bore diameter should have similar magnetic flux density in the air gap. And, while there are always exceptions, this is a reasonable approach for verifying as-found data and for developing winding data in the event as-found data is lost or incorrect. 

Motor Stats
If we wanted to know about the average height of 20-year-old males in a particular country, we could measure the height of a sample of 20-year-old males from their population and then use statistics to draw conclusions about the population based on the sample. 

Searching MotorDb will return a list of all motors in the database that match our search criteria. It would be helpful to know the average air gap flux density for this list of motors (our sample), and how likely that average is to represent the average for all motors in existence that match our criteria (the population). The Motor Stats data lets us do that. 

For example, let’s say that the population shown in Figure 2 represents all squirrel cage induction motors meeting the following criteria: 

  • 100 hp (75 kW) ± 2% 
  • 4 poles / 60 Hz 
  • D = 7 inches (178 mm) ± 2% 
  • L = 10 inches (254 mm) ± 2% 

Now, let’s say the sample shown in Figure 2 represents 25 motors in EASA’s motor rewind database that meet those criteria.

It is reasonable to assume that the air gap flux density for the population is normally distributed with a bell-shaped curve as shown in Figure 3. We base this assumption on our Esson’s Rule (D2L) discussion. 

If this is the case, the air gap flux density of most motors within the population will be reasonably close to the population mean (arithmetic average). We can calculate a confidence interval for any sample of data taken from the population. Confidence intervals for six samples are shown in Figure 3 and labeled A through F. If we take many samples from the population and calculate 95% confidence intervals for each sample, then in the long run, 95% of those intervals will contain the population mean. Also, as you might imagine, small confidence intervals are better than large confidence intervals. 

For our 100 hp (75 kW) example, EASA’s motor rewind database returned 25 motors, and the confidence interval for that sample is represented arbitrarily as Sample F of Figure 3. In our example, the Sample F confidence interval contains the population mean. Sample C in Figure 3 does not contain the population mean and when working with 95% confidence intervals, this will happen 5% of the time. 

The most convenient time to use the Motor Stats tool is when verifying or redesigning data using AC Motor Verification & Redesign. The time-saving benefit here is that you get the statistical summary without having to do a separate search in the database. Now, let’s look at a specific motor and compare it to the Motor Stats output. Figure 4 shows the winding data card, calculated densities, and Motor Stats output. If the as-found data provided a good slot fill, we can conclude it is reasonable for this machine since our calculated air gap flux density is close to the confidence interval for the mean, and both the tooth and back iron flux densities are below the maximum allowable values shown. 

The current density in the stator winding should also be evaluated to ensure it is reasonable for the assumed duty cycle of the machine. While the air gap flux density will typically fall within a reasonably small range, you will often find a wide variance with current density. For example, the current density for an intermittent duty submersible pump motor may be around 200 CMA (10 A/mm2), while a continuous duty premium efficiency motor with similar ratings might be around 800 CMA (2.5 A/mm2). Other machines will be higher or lower than these values. Slot fill should not be adjusted, especially reduced, just to hit some target arbitrary current density. 

The chord factor is the ratio of the voltage induced in a coil to the voltage that would be induced in the same coil if it were full pitch. Undesirable space harmonics are well controlled when the chord factor is in the 0.951-0.991 range, but there are designs with higher or lower values. Some two-pole motors have chord factors in the 0.707-0.866 range and for such machines, it is likely that the manufacturer has evaluated the consequences of space harmonics. Many two and four-pole generator stators have a 0.866 chord factor (2/3 pitch) to eliminate the third space harmonic. And a 0.966 chord factor (5/6 pitch) is found in many machines as it minimizes the fifth and seventh space harmonics.

Available Downloads

Se lanzará la función de estadísticas Motor Stats para el programa AC Motor Verification & Redesign (y el Motor Rewind Data)

Se lanzará la función de estadísticas Motor Stats para el programa AC Motor Verification & Redesign (y el Motor Rewind Data)

Mike Howell, PE
Especialista de Soporte Técnico de EASA 

Muchas consultas enviadas al personal de soporte técnico de EASA requieren una revisión de los datos encontrados en los devanados de las máquinas trifásicas para determinar si son razonables con la placa de características y con las dimensiones del núcleo del estator. El enfoque más común para realizar esta revisión es comparar los datos de bobinado tal como se encontraron con los datos existentes de máquinas con características y tamaños similares de la base de datos de rebobinado de motores de EASA. Si varios registros existentes son muy parecidos a los datos tomados, especialmente del mismo fabricante, la revisión es sencilla. Otras veces, se requiere una inferencia o una suposición fundamentada. EASA lanzará pronto una nueva función de estadísticas (Motor Stats) para los dos softwares: AC Motor Verification & Redesign y Motor Rewind Data para ayudar con las conjeturas fundamentadas. 

Regla de Esson
Desde hace más de cien años, una de las ecuaciones fundamentales utilizadas por los fabricantes a la hora de dimensionar las máquinas eléctricas relaciona el torque con el volumen del rotor. Esto a menudo se conoce como la regla de Esson y se puede expresar como: 

P / N = C0 x D2

donde P es la potencia mecánica, N es la velocidad del rotor y C0 es referido como el coeficiente de salida. Para nuestros propósitos, es importante anotar que el coeficiente de salida (C0) depende en parte de la densidad de flujo magnético en el entrehierro, que es un valor calculado para cada máquina en la base de datos de rebobinado del motor. Y, como se muestra en la Figura 1, D es el diámetro exterior del rotor y L es la longitud del núcleo del rotor. Al comparar máquinas, es razonable utilizar el diámetro interior y la longitud del núcleo del estator envés del diámetro exterior y la longitud del núcleo del rotor. Además, normalmente utilizamos el número de polos envés de la velocidad del rotor, entendiendo que se deben considerar las diferencias con la frecuencia de la placa de datos. 

Entonces, la inferencia que hacemos usando la base de datos de devanados es que las máquinas con potencia mecánica, número de polos (y frecuencia), longitud y diámetro interior del estator similares deberían tener una densidad de flujo magnético similar en el entrehierro. Y, si bien siempre hay excepciones, este es un enfoque razonable para verificar los datos encontrados y para determinar los datos del bobinado en caso de que se pierdan o que no sean correctos. 

Estadísticas del motor (Motor Stats)
Si quisiéramos conocer la altura promedio de los hombres de 20 años en un determinado país, podríamos medir la altura de una muestra de varones de 20 años de su población y usar estas estadísticas para sacar conclusiones sobre la población basadas en la muestra. La búsqueda en la base de datos de EASA (MotorDb) arrojará un listado de todos los motores que coinciden con nuestros criterios de búsqueda. Sería útil conocer la densidad de flujo de entrehierro promedio para este listado de motores (nuestra muestra) y la probabilidad de que ese promedio represente el promedio de todos los motores existentes que coinciden con nuestros criterios (la población). Los datos del Motor Stats nos permiten hacer eso. Por ejemplo, digamos que la población que se muestra en la Figura 2 representa todos los motores de inducción de jaula de ardilla que cumplen los siguientes criterios: 

  • 100 caballos de fuerza (75 kW) ± 2% 
  • 4 polos / 60 Hz 
  • D = 7 pulgadas (178 mm) ± 2 % 
  • L = 10 pulgadas (254 mm) ± 2 % 

Ahora, digamos que la muestra que se ilustra en la Figura 2 representa 25 motores de la base de datos de EASA que cumplen con dichos criterios. Es razonable suponer que la densidad de flujo del entrehierro para la población se distribuye normalmente en una curva con forma de campana, como se muestra en la Figura 3. Basamos esta suposición en nuestra discusión sobre la Regla de Esson (D2L). Si este es el caso, la densidad de flujo del entrehierro de la mayoría de los motores dentro de la población estará razonablemente cerca de la media poblacional (promedio aritmético). Podemos calcular un intervalo de confianza para cualquier muestra de datos tomados de la población. Los intervalos de confianza para seis muestras se pueden ver en la Figura 3 y están marcados con letras que van desde la A hasta la F. Si tomamos muchas muestras de la población y calculamos intervalos de confianza del 95% para cada muestra, entonces, a largo plazo, el 95% de esos intervalos contendrán la media de la población. Además, como se puede imaginar, los intervalos de confianza pequeños son mejores que los grandes. 

Para nuestro ejemplo de 100 hp (75 kW), la base de datos de rebobinado de motores de EASA arrojó 25 motores, y el intervalo de confianza para esa muestra se representa arbitrariamente como la Muestra F de la Figura 3. En nuestro ejemplo, el intervalo de confianza de la Muestra F contiene la media de la población. La muestra C en la Figura 3 no contiene la media poblacional y cuando se trabaja con intervalos de confianza del 95%, esto sucederá el 5% de las veces. El momento más conveniente para utilizar la herramienta Motor Stats es al verificar o rediseñar datos usando el AC Motor Verification & Redesign Program. El beneficio de ahorrar tiempo aquí es que se obtiene el resumen estadístico sin tener que realizar una búsqueda por separado en la base de datos. Ahora, veamos un motor específico y compárelo con la salida de Estadísticas del motor. La Figura 4 muestra los datos del devanado, las densidades calculadas y la salida de estadísticas del motor. Si los datos encontrados proporcionaron un buen llenado de ranura, podemos concluir que son razonables para dicha máquina ya que nuestra densidad de flujo del entrehierro calculada está cerca del intervalo de confianza para la media, y las densidades de flujo en el hierro del diente y del yugo (corona) están por debajo de los límites máximos permitidos mostrados.

También se debe evaluar la densidad de corriente en el devanado del estator para garantizar que sea razonable para el ciclo de trabajo supuesto de la máquina. Si bien la densidad de flujo del entrehierro normalmente estará dentro de un rango razonablemente pequeño, a menudo encontrará una amplia variación en la densidad de corriente. Por ejemplo, la densidad de corriente para el motor de una bomba sumergible de servicio intermitente puede ser unos 200 CMA (10 A/mm2), mientras que en un motor de eficiencia premium de servicio continuo con características similares podría estar alrededor de 800 CMA (2,5 A/mm2) y otras máquinas tendrán valores superiores o inferiores. El llenado de ranura no se debe realizar de forma aleatoria, especialmente reducirse, solo para alcanzar una densidad de corriente arbitraria objetivo. El factor de cuerda es la relación entre el voltaje inducido en una bobina de paso acortado y el voltaje que se induciría en la misma bobina si el paso fuera completo. Los indeseable armónicos espaciales se controlan bien cuando el factor de cuerda está en el rango de 0,951-0,991, pero hay diseños con valores mayores o menores. Algunos motores de dos polos tienen factores de cuerda en el rango de 0,707 a 0,866 y, para tales máquinas, es probable que el fabricante haya evaluado las consecuencias de los armónicos espaciales. Muchos estatores de generadores de dos y cuatro polos tienen un factor de cuerda de 0,866 (paso 2/3) para eliminar el tercer armónico espacial y en muchas máquinas se encuentra un factor de cuerda de 0,966 (paso 5/6), ya que esto minimiza los armónicos espaciales quinto y séptimo.

Available Downloads

Una solución fácil cuando se enfrente al reto de un rediseño sin datos previos

Una solución fácil cuando se enfrente al reto de un rediseño sin datos previos

Gene Vogel
EASA Pump & Vibration Specialist

El software AC Motor Verification & Redesign (ACR-Motor Db) es una poderosa herramienta que permite a los centros de servicio satisfacer las necesidades de rediseño de estatores y rotores bobinados de CA de sus clientes. En la mayoría de los casos, los datos del bobinado se registran al momento de retirar el alambre, pero surgen situaciones en las que los datos originales no están disponibles, han sido registrados de forma incorrecta o que un centro de servicio haya desmantelado el devanado sin terminar la reparación. En estos casos, el centro de servicio debe realizar un rediseño “sin datos”. La ACR-Motor Db cuenta con ciertas características específicas para solucionar estos casos.

CÓMO CALCULAR UN DEVANADO A PARTIR DE UN NÚCLEO DESNUDO

Durante varias décadas, la base de datos de bobinados del programa de EASA (MotorDb) ha compilado los datos enviados por los miembros de EASA. Con más de 300.000 registros, es muy probable que en la MotorDb existan datos similares a los que se buscan. Simplemente, realizando una búsqueda en la base de datos utilizando las dimensiones del núcleo se obtienen varios devanados que coinciden. Para que se pueda usar en un rediseño, un bobinado de la base de datos no tiene que coincidir exactamente con la placa de datos del motor.

Cuando seleccione los datos de un bobinado, estos se pueden transferir automáticamente al programa de Rediseño donde se podrán realizar las modificaciones y ajustes necesarios para alcanzar los criterios deseados. Este proceso es fácil para la mayoría de los motores trifásicos de inducción.

El primer paso consiste en obtener un listado de datos posibles que se correspondan muy de cerca con las dimensiones del núcleo. Ingrese el largo del núcleo, el diámetro interior del núcleo, el número de polos y el número de ranuras en la Motor Db. A manera de ejemplo buscaremos un motor Marathon, 125 hp, 6 polos, 72 ranuras con las siguientes medidas de núcleo: 12” de largo y 14” de diámetro interior (ver Figura 1). La función Get Count rápidamente devuelve los posibles resultados, si estos son 50 o menos haga click en OK para obtenerlos. Estos se verán en formato de hoja de cálculo donde se pueden revisar en forma de columnas. Si los datos son muchos, añada más criterios de búsqueda para depurar los resultados.

En este caso, se encontraron 44 registros tal como se puede ver en la Figura 2. Ya que la hoja de cálculo se puede revisar por columnas, es conveniente verificar la AirDensity (AGD) y la Potencia (Pwr) para evaluar si existen datos que sean buenos candidatos para garantizar un rediseño exitoso. Para nuestro ejemplo existen 16 datos y 10 de ellos son motores Marathon de 125 hp. Así que, para este ejemplo, es posible que haya datos de fábrica disponibles.

Por supuesto, este no siempre será el caso. Supongamos que el motor del ejemplo fuese marca Siemens, que no está en la lista. Aún podemos elegir un fabricante diferente como base para nuestro rediseño sin datos. Seleccione uno de los devanados de la hoja de datos que se acerquen mucho a los criterios de los datos de placa deseados. Los datos completos se pueden ver en un editor (Figura 3).

Los datos originales estaban en la base de datos así que no será necesario ningún rediseño ya que el motor se puede rebobinar usando directamente estos datos. Sin embrago, este no siempre es el caso y el software de EASA tiene una función en la MotorDb que permite transferir los datos a la función ACR la cual permite efectuar el rediseño. Los datos enviados a la función ACR crean un nuevo registro en el que todas las opciones de rediseño quedan disponibles. Retomando nuestro ejemplo, suponga que fuese necesario un rediseño para 575 V. Los datos disponibles en la MotorDb son solo para 230 o 460 V. La Figura 4 muestra un registro de la MotorDb enviado a la función ACR para poder realizar el rediseño de 460 a 575 V.

El bobinado fue rediseñado para 575 V y se cambió la conexión de 6 Y a 3 Y manteniendo los voltios por bobina dentro de los límites aceptables (Ver Figura 5).

La combinación entre la EASA Winding Database y el Verification and Redesign program es una solución sencilla para afrontar los retos de los bobinados sin alambre. Para ver las instrucciones paso a paso, vea el video tutorial, How to calculate a winding from a bare core disponible en go.easa.com/wbc.

Available Downloads

Use of Sensors to Optimize Maintenance and Lifetime

Use of Sensors to Optimize Maintenance and Lifetime

Bjorn Mjaveit
Technical Education Committee Member
EMR Consulting AS
Bergen, Norway

Industry 4.0 and now Industry 5.0 gives us yet again new trends and interpretations of how the world will develop. Some call Industry 5.0 the revenge of the humans when they are taken into account.

The last couple of years, we have all heard a lot about digitalization, sensors, artificial intelligence, sustainability and machine learning. But what does it mean for us? In this article, I will focus on the sensors and how they are linked to the electromechanical industry.

Available Downloads