Want to Know More?
Tyler Voss Membership & Communications Specialist+1 314 993 2220tvoss@easa.com
SEND ME MORE INFORMATIONJOIN EASA
SEARCH THE RESOURCE LIBRARY
Try Asking Eddy!EASA's AI assistant is ready to help 24/7/365 in the language of your choice.
EASA.COM/EDDY
REGISTER FOR UPCOMING TRAINING
GO TO LEARNING CENTERLEARN MORE FAQsBUY RENEWVIEW/MANAGE ENROLLMENT INFO
Need an Accredited service center?Find a service center that has proven they repair electric motors in accordance with ANSI/EASA's AR100.
VIEW THE LISTLEARN MORE ABOUT THE PROGRAM
DOWNLOAD ACCREDITATION CHECKLISTACCREDITED? VIEW YOUR RECORDS
Exhibit in 2026!Make sure your company is represented in the industry's premeire networking and education event.
LEARN MORE
SPEAKERS' PORTAL
Engage locallyEASA's international membership is divided into 10 Regions that are made up of 32 Chapters.
EXPLORE CHAPTERS & EVENTS NEAR YOUCHAPTER OFFICER RESOURCES
SEARCH THE ONLINE STORE
CUSTOM BRANDED PRODUCTSDOWNLOADS YOU HAVE PURCHASEDVIEW YOUR PURCHASED TRAININGVIEW CONVENTION RECORDINGS
Ian Culbert (deceased) Iris Power-Qualitrol
Editor’s Note: The following article was written by Ian Culbert, an engineer with Iris Power - Qualitrol in Mississauga, Ontario, Canada. It was submitted for publication by John Letal of Iris Power - Qualitrol and member of EASA’s Technical Services Committee. Sadly, Mr. Culbert passed away recently. We appreciate his contributions to the industry.
Introduction Due to their ever decreasing costs, variable frequency drives (VFDs) are becoming more popular for energy conservation and the reduction in inrush currents during motor starting. The most widely used type of drive today is a voltage-source, with pulse width modulated (VS-PWM) inverter, since it tends to be less expensive than other possible topologies.
In the past decade, medium and high voltage motors rated 2.4 kV to 13.8 kV fed by VS-PWM drives have become more common. Currently motors rated up to 100 MW are being designed. Motors supplied from such drives have seen premature stator winding failures since the voltage impulses from the drive can lead to rapid insulation system aging. In most cases, as the aging progresses, the partial discharge (PD) activity increases. Thus, there is a desire for on-line PD detection for such motors.
Unfortunately measurements with conventional electrical PD detectors tend to be masked by 1000-3000 V impulses created by multi-stage VS-PWM drives. The rise time of the voltage impulses from the multi-stage VS-PWM drives tend to be 500 ns or longer. This article describes the technical issues in on-line PD detection on motors fed by VS-PWM drives, and gives an example of one system that detected the PD successfully.
LOGIN TO VIEW AND DOWNLOAD THE ARTICLE