Facebook Twitter LinkedIn YouTube Menu Search Arrow Right Arrow Left Arrow Down Arrow Up Home Arrow Next Arrow Previous RSS Icon Calendar Icon Warning Icon

How to schedule

To schedule private education for your group, contact:

Dale Shuter, CMP
Meetings & Expositions Manager

+1 314 993 2220, ext. 3335
dshuter@easa.com

1 hour of training

$300 for EASA Chapters/Regions
$400 for member companies
$800 for non-members

How a webinar works

All EASA private webinars are live events in which the audio and video are streamed to your computer over the Internet. Prior to the program, you will receive a web link to join the meeting. 

The presentation portion of the webinar will last about 45 minutes, followed by about 15 minutes of questions and answers.

Requirements

  • Internet connection
  • Computer with audio input (microphone) and audio output (speakers) appropriate for your size group
  • TV or projector/screen

Zoom logo

The Zoom webinar service EASA uses will ask to install a small plugin. Your computer must be configured to allow this in order to have full functionality. Please check with your IT department or company's security policy prior to scheduling a private webinar.

Private Webinars

EASA's private webinars are an inexpensive way to bring an EASA engineer into your service center, place of business or group meeting without incurring travel expenses or lost production time.

AC Motor Assembly and Testing

AC Motor Assembly and Testing

This webinar recording focuses on:

  • Motor assembly issues
  • Electrical and mechanical inspection
  • Static and run testing
  • AC motors with ball, roller and sleeve bearings

Target audience: This webinar recording is most useful for service center mechanics, supervisors and engineers. The content will also be beneficial for machinists, managers and owners.

Axial Thrust in Rotodynamic (Centrifugal) Pumps

Axial Thrust in Rotodynamic (Centrifugal) Pumps

ABB logoGene Vogel
EASA Pump & Vibration Specialist

When repairing centrifugal and axial flow pumps, axial thrust is a concern. An understanding of the causes and the mitigating provisions of various pump designs will help repair technicians to ensure those provisions work properly. Various impeller designs, end suction and vertical turbine pumps will be a primary focus. 

Primary topics are: 

  • Factors affecting the amount of axial thrust developed by an impeller 
  • Review of some common mitigation designs 
  • What repair technicians need to look for on various pump designs 

The mechanical pump components can be repaired without understanding the hydraulics of how a pump works. But it’s easy to miss important features that can affect pump performance and reliability.  

This presentation will be helpful for pump repair technicians and supervisor and engineers associated with pump repair.

Available Downloads

Ball Bearing Tips

Ball Bearing Tips

Dale Hamil
Technical Education Committee Member
Illinois Electric Works

Extending bearing life is the subject of hundreds of articles. Most have to do with lubrication do’s and don’ts, mounting issues, improper handling and contamination. This article is not intended to supplant any of those articles. My intent here is to provide some common sense guidance and provide links to resources that can help.

Available Downloads

Características y propiedades de prueba de grasas y aceites

Características y propiedades de prueba de grasas y aceites

Tom Bishop, PE
Especialista Sénior de Soporte Técnico de EASA

La lubricación es requerida para reducir la fricción entre los elementos rodantes y las partes estáticas de los rodamientos. Al hacer esto, el lubricante también ayuda a prevenir incrementos de temperatura excesivos y a disipar parte del calor generado. En este artículo discutiremos algunas de las características y propiedades clave de los aceites y grasas lubricantes.

Available Downloads

Electric Motor Bearing Lubrication

Electric Motor Bearing Lubrication

Megger Baker InstrumentsTom Bishop, P.E.
EASA Senior Technical Support Specialist

This webinar recording reviews electric motor bearing grease and oil lubrication frequency and quantity, as well as procedures – and the steps to be sure to get all of this right. 

  • Grease and oil lubrication frequency and quantities for ball and roller bearings
  • Grease and oil lubrication procedures for ball and roller bearings
  • Oil lubrication frequency and quantities for sleeve bearings
  • Oil lubrication procedures for sleeve bearings

This recording is intended for mechanical technicians, field service technicians, shop supervisors and engineering staff.

Available Downloads

Fallos en los Rodamientos de Elementos Rodantes de un Motor

Fallos en los Rodamientos de Elementos Rodantes de un Motor

Austin Bonnett
Austin Bonnett Engineering LLC

La finalidad de este artículo es proporcionar fundamentos suficientes sobre los rodamientos para que los responsables por la aplicación, operación, mantenimiento y reparación de los motores eléctricos puedan tomar las medidas necesarias para minimizar los fallos prematuros y mejorar la posibilidad de que de los rodamientos duren hasta el “final de la vida útil”, que normalmente se denomina L10.

Available Downloads

Follow these procedures when checking endplay in a ball bearing machine

Follow these procedures when checking endplay in a ball bearing machine

Chuck Yung
EASA Senior Technical Support Specialist

We rebuilt a 75 HP electric motor recently. It ran fine in the service center, but the customer reported high bearing temperatures shortly after installing the motor.  The bearings failed after only a few hours at full load. 

The first response for most of us is to suspect an alignment problem.  But there is another possibility that should be considered.  An electric motor must have room for thermal expansion of the shaft, or bearing life will be severely reduced.

The endplay of a ball bearing motor plays an important role in bearing life. Because the frame dissipates heat generated in the rotor and windings, the rotor/shaft assembly is considerably hotter than the stator frame.  Thermal expansion of the shaft exceeds that of the frame. To compensate, allowance must be made for the shaft to “grow” axially.  Failure to do so will result in preloading of both bearings, with rapid failure of the bearing with the lower load-carrying capacity. That usually is the smaller ODE bearing.

For a carbon steel shaft, the length increases at the rate of  0.0000067” per inch of shaft length per degree (F) of temperature change.  For a 30” long shaft with an 80°F increase in temperature: 30 x 0.0000067 x 80 = 0.016” increase in length. There must be at least that much extra room between one bearing and the shoulder in the end bracket, or this thermal growth will pre-load the bearing.

Most designs ‘locate’ one end (usually the DE) of the shaft, with sufficient room provided in the other end for thermal expansion of the shaft.  That means the DE bearing is held captive by the housing and bearing cap, to prevent axial displacement of the coupling.  Too much ‘play’ in the motor shaft can damage the driven equipment. 

When a bearing fails, it is often difficult or impossible to determine the original location of the bearing shoulder. This uncertainty demands a reliable method for determining whether the repaired motor has adequate provision for thermal expansion.  By following some basic steps, the assembly mechanic can assure that the motor has this room. 

With both end brackets installed, and the bearing caps tight, place a dial indicator on the ODE bracket to measure axial shaft movement. Use a soft-face mallet to tap the shaft towards the DE, zero the indicator, then tap the shaft towards the ODE.  The only movement should be internal play in the bearing. 

Next, loosen both bearing caps and move the shaft towards the ODE.  The measurement obtained is the available room for thermal growth of the shaft.  There must be room for the shaft to grow thermally without pre-loading the bearings. (Rule of thumb: Allow at least .010” per foot of shaft length between bearings.)  If the motor has enough allowance for thermal growth, the last step is to verify whether the bearing caps are preloading the bearings by pulling outwards (tension pre-load.)

To check this, first tighten the DE bearing cap. This pulls the bearing into its normal operating position.  Now zero the indicator, loosen the DE bearing cap and tighten the ODE bearing cap.  If the shaft moves, then the bearing caps are preloading the bearings.  If not corrected, one of two things will happen. Either a bearing will be dislocated from the shoulder, or the bearing L10h life will be decreased.  The reduction in L10h bearing life will be proportional to the amount of pre-load.  By way of example, a .040” pre-load can decrease L10h bearing life to a matter of hours.

Tip:  When a stock motor is modified for a direct couple application, the DE roller bearing should be replaced with a standard ball bearing. Because the roller bearing is held captive, and the ODE bearing served to locate the shaft, this modification requires that the endplay be corrected.  You could assemble the motor, check the endplay as described above, then dismantle the motor and do the appropriate machine work, but a good shortcut is to machine 0.020” from the ODE bearing cap face, and machine the bearing fit of the ODE end bracket 0.040” deeper.  This ensures that the bearings will not be preloaded in either direction.  Final endplay checks should still be made as outlined above, but the shortcut virtually guarantees that the motor will not have to be dismantled for further machine work.[EasyDNNnews:PaidContentEnd]

Available Downloads

Fundamentals of rolling bearing enclosures, clearances and fits

Fundamentals of rolling bearing enclosures, clearances and fits

Tom Bishop, P.E. 
EASA Technical Support Specialist
 
Much of what will be discussed in this article applies to all rolling bearings, both ball and roller. Our focus, though, will be on issues that relate mostly to ball bearings used in electric motors. The intent is to address some of the fundamentals of rolling bearing enclosures, internal clearances and fits. We deal with rolling bearings every day, but we don’t always consider some of these fundamentals until there is a bearing related problem. 

Note: Rolling bearings were previously referred to as antifriction bearings. The American Bearing Manufacturers Association (ABMA), formerly the Antifriction Bearing Manufacturers Association (AFBMA), now terms antifriction bearings as “rolling bearings.” 

Available Downloads

Fundamentos de Reparación Mecánica de Motores Eléctricos

Fundamentos de Reparación Mecánica de Motores Eléctricos

Fundamentos de Reparación MecánicaEn toda reparación mecánica, la capacidad para desmontar, reparar y volver a montar el motor de forma apropiada sin dañar innecesariamente ninguna de sus piezas es fundamental. Esto suena sencillo, sin embargo, durante el proceso de desarme se cometen demasiados errores costosos.

Si todos los motores entraran “como nuevos”, la tarea sería más simple, aunque esto no sería garantía de que el montaje del motor fuera adecuado.

Cuando un centro de servicio recibe un pago por reparar un equipo, quiere que este permanezca en funcionamiento, ya que, si el equipo falla dentro del período de garantía, deberá asumir el costo de volver a repararlo. Por lo que tiene sentido realizar la reparación correcta la primera vez.

Los procedimientos de reparación, así como los propios motores, son afectados por los cambios en la tecnología. Este libro intenta incluir las últimas tecnologías comprobadas. En muchos casos, los métodos de reparación tradicionales aún pueden ser la alternativa más práctica. Las opciones presentadas a lo largo de este libro están destinadas a ayudar a los técnicos a seleccionar el método de reparación correcto, reconociendo que la decisión final recae en el propietario del equipo.

Algunas veces los métodos de reparación pierden popularidad, no porque aparezcan métodos mejores sino debido a técnicas deficientes. Otros métodos de reparación son adecuados para algunas aplicaciones, pero no para otras. Es trabajo del reparador decidir cuál será el mejor método para cada caso.

Este libro se encuentra dividido en secciones para los componentes básicos del motor con métodos de reparación y consejos dispersos por todas partes. Donde resulte práctico, se discuten también las causas de fallo. Esto ayudará a los técnicos a seleccionar el método de reparación más apropiado para cada aplicación en particular. La información presentada se basa en publicaciones de EASA y en revistas técnicas y literatura suministrada por fabricantes de motores, proveedores y centros de servicio establecidos.

COMPRAR DESCARGAR COMPRAR VERSIÓN IMPRESA

Tabla de contenido

  • Terminología del motor
  • Aplicaciones del motor y encerramientos
  • Procedimientos de inspección y prueba
  • Consejos para desmontar motores
  • Rodamientos
  • Alojamientos de rodamientos, orificios de eje, sellos y ajustes
  • Ejes
  • Rotores
  • Ensamble del motor
  • Accesorios y cajas de conexiones del motor
  • Dinámica del motor
  • Vibración y geometría del motor
  • Corrientes por el eje/rodamientos
  • Consideraciones especiales para motores a prueba de explosión
  • Fallos en las componentes mecánicas
  • Reparaciones misceláneas

Esta obra contiene muchas sugerencias sobre el manejo apropiado de las diferentes partes de un motor para minimizar los daños durante el proceso de reparación. Sin embargo, es imposible desarrollar un listado que las incluya todas.

En cambio, el principio básico de tomarse el tiempo para usar la herramienta adecuada y por lo general el procedimiento apropiado guiará a los técnicos por el camino correcto.

Lubricantes sintéticos para rodamientos con elementos rodantes

Lubricantes sintéticos para rodamientos con elementos rodantes

Art Godfrey (retired)
Birclar Electric & Electronics

Mi primera experiencia con lubricantes sintéticos para rodamientos con elementos rodantes fue durante la reparación de dinamómetros para probar motores de automóviles de alta velocidad. Durante varios años nuestro centro de servicio había reparado máquinas similares con rodamientos con elementos rodantes, pero todas ellas estaban lubricadas con sistemas de bombeo de aceite con accesorios especiales cerca de los rodamientos para suministrar solo pequeñas cantidades de aceite por minuto.

Comenzamos a ver máquinas enviadas para reparación con rodamientos con elementos rodantes lubricadas con grasa y estas indicaban en la placa de datos una marca y tipo de lubricante específicos. Compramos lo que estaba especificado en la placa y todo salió bien. Con el tiempo, comenzamos a ver más máquinas que especificaban la misma marca de grasa, pero con un tipo o grado diferente y esto me condujo a comenzar a buscar las diferencias en los productos, ya que uno era muy costoso y tenía una vida útil limitada.

Available Downloads

Mechanical Reference Handbook

Mechanical Reference Handbook

Mechanical Reference HandbookDESCRIPTION
This 94-page handbook (3.5" x 6", 9cm x 15cm) contains carefully selected materials designed to assist repair firms in their everyday work. Just as important, your customers and potential customers can use this pocket handbook as a handy reference for mechanical data for motors and driven equipment. Buy this great resource as is OR custom brand your company logo and information on the cover to turn it into a great marketing piece for your salespeople!

BUY COPIES OF THIS HANDBOOK

TABLE OF CONTENTS

Alignment
Alignment Information
Suggested Alignment Tolerances
ANSI/ASA Alignment Quality

Balancing And Vibration
Single-Plane Versus Two-Plane Balancing
Vibration Tests
Unfiltered Housing Vibration Limits
FFT Vibration Analysis
Vibration Constants
Vibration Conversion Factors
Electric Motor Vibration Diagnostic Chart

Motor Application Forumlas
Output
Shear Stress
Speed–AC Machinery 
Affinity Laws–Centrifugal Applications

Conversion Factors, Equivalencies & Formulas
Conversion Factors
Temperature Conversion Chart
Common Fractions Of An Inch–Decimal & Metric Equivalents
Prefixes–Metric System
Formulas For Circles

Bearings
Nominal Dimensions For Radial Ball Bearings
Nominal Dimensions For Cylindrical Roller Bearings
Radial Ball Bearing Fit Tolerances
Cylindrical Roller Bearing Fit Tolerances
Lock Nuts And Lock Washers For Ball Bearings

Motor Bearing Lubrication
Lubricating Oil Viscosity Conversions
NLGI Grease Compatibility Chart
Grease Classifications
Grease Relubrication Intervals

Metals And Alloys
Properties Of Metals And Alloys
Weight Formulas For Steel
Thermal Linear Expansion

Bolts
ASTM And SAE Grade Markings For Steel Bolts And Screws
Precautions For Tightening Bolted Joints
Bolt Tightening Torque Values
Tap Drills And Clearance Drills For Machine Screws

Keys And Keyseats
NEMA Keyseat Dimensions–Foot-Mounted AC & DC Machines
IEC Shaft Extension, Key And Keyseat (Keyway) Dimensions
Square And Flat Stock Keys
Standard Keyseat Sizes
Metric Keys–Standard Sizes

Belts And Sheaves
Pulley Formulas For Calculating Diameters and Speeds
Belt Installation
Belt Tensioning
Belt Deflection Force And Elongation Ratio
Standard V-Belt Profiles And Dimensions
V-Belt Sheave Dimensions
V-Belt Sheave Dimensions For AC Motors With Rolling Bearings
Application Of V-Belt Sheave Dimensions To AC Motors With Rolling Bearings
Mounting Of Pulleys, Sheaves, Sprockets, And Gears On Motor Shafts
Minimum Pitch Diameter For Drives Other Than V-Belts

Welding, Brazing And Soldering
Recommended Copper Welding Cable Sizes
Types Of Weld Joints 
Brazing
Basic Joints For Brazing
Soldering
Melting Temperatures Of Tin-Lead-Antimony Alloys
Flux Requirements For Metals, Alloys And Coatings

Slings, Wire Rope, Shackles and eyebolts
Types Of Slings
Typical Sling Hitches
Wire Rope
Spreader Bars
Lifting Capacity
Forged Shackles
Eyebolt Strength

Common Signals For Crane

Available Downloads

Motor Rolling Element Bearing Failures

Motor Rolling Element Bearing Failures

Austin Bonnett
Austin Bonnett Engineering LLC

The purpose of this article is to provide enough rolling element bearing fundamentals so those who are responsible for the application, operation, maintenance and repair of electric motors can take the necessary steps to minimize premature bearing failures and enhance the possibility of bearings lasting until the "end of life" predictions, which is normally referred to as L10 bearing life.

Available Downloads

Principles of Medium & Large AC Motors, 1st Edition - IEC

Principles of Medium & Large AC Motors, 1st Edition - IEC

This version of Principles of Medium & Large AC Motors manual is now available to address applicable IEC standards and practices. This 360-page manual was developed by industry experts in Europe along with EASA's engineering team. (The "original" version of this book based on NEMA standards remains available as a separate document.)

This manual includes drawings, photos and extensive text and documentation on AC motors, including how they work, information on enclosures, construction on components and applications. Many of the principles included apply to all AC motors, especially those with accessories that are associated with larger machines in the past (such as encoders, RTDs, thermostats, space heaters and vibration sensors).

While the manual covers horizontal and vertical squirrel-cage induction motors in the 37 to 3,700 kW (300 to 5,000 hp) range, low- and medium-voltage, most of the principles covered apply to other sizes as well. 

This valuable instructional/resource manual is available in printed and downloadable versions, and focuses primarily on IEC motors.

Sections in the manual include:
(Download the PDF below for the complete Tables of Contents)

  • Motor nomenclature & definitions
  • Motor enclosures
  • Typical motor applications
  • Safety & handling considerations
  • Basic motor theory
  • Motor standards
  • Stators
  • Squirrel cage rotors
  • Shafts
  • Bearings & lubrication
  • Motor accessories & terminal boxes
  • Test & inspection procedures
  • Motor alignment, vibration & noise
  • Storage procedures
  • Synchronous machines

BUY A COPY FOR YOUR OFFICE

PRINTED BOOK DOWNLOADABLE PDF

This book is also available focusing on NEMA Standards — in both English and Español.

NEMA - English NEMA - Español

Available Downloads

Procedimientos y Precauciones al Convertir Cojinetes de Deslizamiento a Rodamientos de Bolas/Rodillos

Procedimientos y Precauciones al Convertir Cojinetes de Deslizamiento a Rodamientos de Bolas/Rodillos

Chuck Yung
Especialista Sénior de Soporte Técnico de EASA

Existen ocasiones en las que una aplicación requiere que un motor soporte una carga radial para la que los cojinetes de deslizamiento no son adecuados. En casos como bajas revoluciones, carcasas inusuales, etc., puede ser conveniente convertir el motor del cliente montado sobre cojinetes de deslizamiento envés de obtener un motor de repuesto con rodamientos de bolas / rodillos. Este artículo contiene procedimientos sugeridos y advertencias sobre problemas potenciales relacionados con dichas conversiones.

Primero, inspeccione las tapas del motor para asegurarse de que tengan la rigidez mecánica suficiente para soportar la carga y suprimir la vibración (vea la Figura 1). Si las tapas carecen de rigidez, puede que sea necesario utilizar tapas nuevas fabricadas con un material más grueso. En otros casos, se puede utilizar un inserto para reforzar la tapa existente.

Available Downloads

Recuerde seguir el ABC de la inspección de rodamientos

Recuerde seguir el ABC de la inspección de rodamientos

Chuck Yung
Especialista Sénior de Soporte Técnico de EASA

Muchos de sus clientes cuentan con buenos departamentos de mantenimiento predictivo propios y otros lo subcontratan con proveedores externos calificados. En ambos casos, ellos deben saber cuando un rodamiento presenta deterioro y sacar de servicio el motor antes que el fallo se vuelva desastroso. En términos de mantenimiento, esto ahorra mucho dinero, lo cual es excelente. Pero si el cliente se detiene ahí, sin descubrir por qué el rodamiento está mal, su motor puede regresar reparado de nuevo con el mismo problema. Los rodamientos defectuosos aportan una gran cantidad de evidencias, si solamente las buscamos.

La clave consiste en la comunicación con el cliente, dado que nosotros los reparadores, sabemos que el motor fue retirado del servicio debido a un fallo en los rodamientos, podemos ir un paso más adelante en el proceso de diagnóstico.

Especialmente debido al uso frecuente de los variadores de velocidad electrónicos (VFDs), las corrientes por los rodamientos causan un número considerable de fallos en los mismos. Si sabemos que el motor funciona con un variador de velocidad electrónico, existen medidas correctivas para prevenir fallos futuros del mismo tipo. Y esos pasos adicionales son facturación extra. Ignorar esos pasos de inspección adicionales, es como olvidar dinero encima de la mesa, tanto para el centro de servicios como para el cliente.

Available Downloads

Remember to follow the ABCs of bearing inspection

Remember to follow the ABCs of bearing inspection

Chuck Yung
EASA Senior Technical Support Specialist

Many of your customers have good in-house predictive maintenance departments and others outsource that skill. Either way, they should know when a bearing is deteriorating and remove the motor from service before it turns into a catastrophic failure. That saves a lot of maintenance dollars, which is great. But if the customer stops there, without discovering why that bearing is bad, your repaired motor could be returned with the same problem again. Defective bearings often hold a great deal of evidence, if we only look for it. 

The key is communication with the customer so that we repairers know that the motor was removed for bearing faults, and so that we can go a step further in the diagnostic process. Especially with the prevalence of variable frequency drives (VFDs), bearing currents cause a significant number of bearing failures. If you know the motor is operating from a drive, there are corrective measures to prevent future failures of the same type. And those extra steps are billable extras. Neglecting these additional inspection steps is like leaving money on the table, for both the service center and the customer.

Available Downloads

Sleeve Bearing to Ball / Roller Bearing Conversion Procedures and Cautions

Sleeve Bearing to Ball / Roller Bearing Conversion Procedures and Cautions

Chuck Yung
EASA Senior Technical Support Specialist

There are times when an application calls for a motor to carry a radial load for which sleeve bearings are not suitable. In cases such as low rpm, unusual frames, etc., it may be desirable to convert a customer's existing sleeve bearing motor rather than obtaining a ball/roller replacement motor. This article contains suggested procedures as well as cautions about potential problems with such conversions.  

First, inspect the end brackets to ensure they are mechanically rigid enough to support the load and suppress vibration (see Figure 1). If the end brackets lack rigidity, it may be  necessary to use complete fabricated replacements using thicker material. In other cases, gusseting can be used to stiffen the existing bracket.

Available Downloads

Synthetic lubricants for use in rolling element bearings

Synthetic lubricants for use in rolling element bearings

Art Godfrey (retired)
Birclar Electric & Electronics

My first exposure to synthetic lubricants for rolling element bearings was during repair of high-speed, automotive engine-test dynamometers. For several years, our service center had repaired similar machines with rolling element bearings, but they were all oil lubricated by pump systems with specially-selected fittings near the bearings to deliver only small amounts of oil per minute.

We began to see rolling-element-bearing machines in for repair that were grease lubricated, and these displayed a specific make and type of lubricant on the nameplate. We purchased what was specified on the nameplate and all was well. Over time, we began to see more machines specifying the same make of grease, but a different grade or type. This led me to begin looking into the differences in the products, since each one was fairly costly and had a limited shelf life (for instance 24 months if in an unopened container).

Topics covered include:

  • Details of the process
  • Range of synthetic greases
  • Things to carefully consider

Available Downloads

Vertical Motor Operation and Repair

Vertical Motor Operation and Repair

Chuck Yung
EASA Senior Technical Support Specialist

Vertical motors differ from horizontal motors in numerous ways, yet some view them as “just a horizontal motor turned on end.” The obvious differences are the (usually) thrust bearings, with arrangements varying from single- to three-thrust bearings with different orientations suited for specific load, rpm and applications.

Less obvious differences are in the ventilation arrangements, shaft stiffness, degrees of protection and runout tolerances. This session will include:

  • Bearing systems: Single, double or more?, Thrust direction, Angle of contact and rpm, Spherical thrust bearings, hydrodynamic
  • Ventilation and cooling
  • Operating environment, and enclosures: Enclosures (degrees of protection), ODP, TEFC, WPI, WPII (IP equivalents)
  • Oil types and quantity: Bearing load and operating temperature, Consideration of speed, Sizing and adding cooling tubes
  • Runout tolerances and repair methods: Upper bearing housing, Bearing carrier and shaft, Bottom bracket flange, Best practice methods for re-machining

This recording will benefit the service center owner, supervisor, technicians, sales personnel and customer.

Available Downloads