Facebook Twitter LinkedIn YouTube Menu Search Arrow Right Arrow Left Arrow Down Arrow Up Home Arrow Next Arrow Previous RSS Icon Calendar Icon Warning Icon

How to schedule

To schedule private education for your group, contact:

Dale Shuter, CMP
Meetings & Expositions Manager

+1 314 993 2220, ext. 3335
dshuter@easa.com

1 hour of training

$300 for EASA Chapters/Regions
$400 for member companies
$800 for non-members

How a webinar works

All EASA private webinars are live events in which the audio and video are streamed to your computer over the Internet. Prior to the program, you will receive a web link to join the meeting. 

The presentation portion of the webinar will last about 45 minutes, followed by about 15 minutes of questions and answers.

Requirements

  • Internet connection
  • Computer with audio input (microphone) and audio output (speakers) appropriate for your size group
  • TV or projector/screen

Zoom logo

The Zoom webinar service EASA uses will ask to install a small plugin. Your computer must be configured to allow this in order to have full functionality. Please check with your IT department or company's security policy prior to scheduling a private webinar.

Private Webinars

EASA's private webinars are an inexpensive way to bring an EASA engineer into your service center, place of business or group meeting without incurring travel expenses or lost production time.

Article

The (potential) pitfalls of parallel circuits

  • November 2011
  • Number of views: 1845
  • Article rating:

Editor's Note: This "encore" technical article first appeared in the September 2003 issue of Currents. It was written by former Technical Support Specialist Cyndi Nyberg Esau.

To make more efficient use of time and materials, winders may want to increase the number of parallel circuits when winding an AC stator (or wound rotor). However, there are limits to the number of parallel circuits that can be used in an AC stator (or wound rotor) design. In this article, some of the potential problems associated with increasing the number of parallel circuits will be analyzed.

If the original design of a mo­tor has few turns with large wires, or many wires in hand, it may be easier to rewind if the number of parallel circuits can be increased (see Figure 1). Doubling the circuits, for example, doubles the turns per coil and cuts in half the wire size or the number of wires in hand. Of course, doubling the circuits also doubles the volts per coil.

Available Downloads



Print