Facebook Twitter LinkedIn YouTube Menu Search Arrow Right Arrow Left Arrow Down Arrow Up Home Arrow Next Arrow Previous RSS Icon Calendar Icon Warning Icon

How to schedule

To schedule private education for your group, contact:

Dale Shuter, CMP
Meetings & Expositions Manager

+1 314 993 2220, ext. 3335
dshuter@easa.com

1 hour of training

$300 for EASA Chapters/Regions
$400 for member companies
$800 for non-members

How a webinar works

All EASA private webinars are live events in which the audio and video are streamed to your computer over the Internet. Prior to the program, you will receive a web link to join the meeting. 

The presentation portion of the webinar will last about 45 minutes, followed by about 15 minutes of questions and answers.

Requirements

  • Internet connection
  • Computer with audio input (microphone) and audio output (speakers) appropriate for your size group
  • TV or projector/screen

Zoom logo

The Zoom webinar service EASA uses will ask to install a small plugin. Your computer must be configured to allow this in order to have full functionality. Please check with your IT department or company's security policy prior to scheduling a private webinar.

Private Webinars

EASA's private webinars are an inexpensive way to bring an EASA engineer into your service center, place of business or group meeting without incurring travel expenses or lost production time.

Article

Resonance and its effect on mechanical structures

  • May 2011
  • Number of views: 10464
  • Article rating:

Gene Vogel
EASA Pump and Vibration Specialist

Resonance is a property of all mechanical structures. It can be described as a sensitivity to a certain vibration frequency. For machinery such as electric motors, pumps, turbines, etc., it becomes a problem when small vibratory forces from the machine operation are amplified by mechanical resonance. The result can be very severe vibration levels, even when the exciting forces are small. Often resonance is encountered when a speed change has been implemented, as with retrofitting a VFD or operating a 50 Hz motor on 60 Hz power.

The most common example of resonance is when the structure supporting a machine is resonant at or near the rotating speed of the machine. Even slight vibratory forces from residual unbalance and misalignment will excite the resonant base structure, resulting in severe vibration. The machine components can also be resonant. There are many examples of 2-pole electric motors where a resonant endbracket caused very high axial vibration at 1 x rpm or 2 x rpm.

A second category of resonant conditions occurs when the resonant component is the rotating element of the machine. This is common with gas and steam turbines, centrifugal pumps and 2-pole electric motors. While the result is similar (high vibration when a certain operating speed is reached), this is a more complex phenomenon. When the operating speed reaches the resonant frequency of the rotating element, the rotating element actually distorts and the vibratory forces increase significantly.

There is a need to distinguish between these two types of resonance. The first, where a supporting structure or non-rotating machine component is resonant, is usually referred to as a “structural resonance.” The second, where the rotating element is resonant, is known as the “rotor critical speed.” This leaves the term “critical speed” (without the word “rotor”) somewhere in limbo.

Technically, a critical speed could be either a structural resonance or a rotor critical speed. For the sake of clarity it’s best to avoid using that term. The simple term “resonance” can be applied to both conditions to avoid confusion.

Available Downloads



0Upvote 0Downvote
Print