Facebook Twitter LinkedIn YouTube Menu Search Arrow Right Arrow Left Arrow Down Arrow Up Home Arrow Next Arrow Previous RSS Icon Calendar Icon Warning Icon

How to schedule

To schedule private education for your group, contact:

Dale Shuter, CMP
Meetings & Expositions Manager

+1 314 993 2220, ext. 3335
dshuter@easa.com

1 hour of training

$300 for EASA Chapters/Regions
$400 for member companies
$800 for non-members

How a webinar works

All EASA private webinars are live events in which the audio and video are streamed to your computer over the Internet. Prior to the program, you will receive a web link to join the meeting. 

The presentation portion of the webinar will last about 45 minutes, followed by about 15 minutes of questions and answers.

Requirements

  • Internet connection
  • Computer with audio input (microphone) and audio output (speakers) appropriate for your size group
  • TV or projector/screen

Zoom logo

The Zoom webinar service EASA uses will ask to install a small plugin. Your computer must be configured to allow this in order to have full functionality. Please check with your IT department or company's security policy prior to scheduling a private webinar.

Private Webinars

EASA's private webinars are an inexpensive way to bring an EASA engineer into your service center, place of business or group meeting without incurring travel expenses or lost production time.

Article

Getting the most from power factor tip-up testing

  • April 2017
  • Number of views: 19054
  • Article rating:

Chase Fell
Precision Coil and Rotor

An ideal insulator allows no leakage current to flow. The power factor of an insulator is defined as the cosine of the phase angle between voltage and current. For an ideal insulator, the current leads the voltage by exactly 90 degrees and the power factor for this ideal system would be zero. Coil systems in electric motors and generators have inherent losses causing capacitive and resistive current flow. For this insulation, the power factor cannot be zero. 

The power factor (PF) tip-up test is commonly used as a quality measurement for new coils and windings manufactured for AC motors and generators rated 6 kV and higher. For modern stator winding insulation systems, the power factor and the dielectric dissipation factor are very nearly the same. PF tip-up testing can be useful to verify the quality of the winding manufacturing process, insulation material performance, consolidation of conductors, uniformity of groundwall taping and state of resin curing. Once an insulation system reaches corona inception voltage (CIV), partial discharge (PD) will effectively short out some of the capacitance of the insulation and the power factor will increase. PF testing is applicable to individual vacuum pressure impregnation (VPI) coils and resin-rich coils as well as cured complete windings. Power factor tip-up testing is not applicable for bench testing of green VPI coils or evaluating pre-processed complete VPI windings. 

The power factor tip-up test can be useful in the rewind shop to verify the quality of a newly-installed coil system including the effectiveness of VPI processing. PF testing of in-service windings can set a baseline measurement for maintenance trending. The in-service PF tip-up test can potentially identify groundwall insulation aging since the capacitance between the copper conductor and the core is generally reduced as delamination and/or air pockets become present in the insulation between the coils and the core.

AVAILABLE IN SPANISH

Available Downloads



Print