Private Webinars - EASA | The Electro•Mechanical Authority
Facebook Twitter LinkedIn YouTube Menu Search Arrow Right Arrow Left Arrow Down Arrow Up Home Arrow Next Arrow Previous RSS Icon Calendar Icon Warning Icon

How to schedule

To schedule private education for your group, contact:

Dale Shuter, CMP
Meetings & Expositions Manager

+1 314 993 2220, ext. 3335
dshuter@easa.com

1 hour of training

$500 for EASA Chapters/Regions
$800 for member companies
$1000 for non-members

How a webinar works

All EASA private webinars are live events in which the audio and video are streamed to your computer over the Internet. Prior to the program, you will receive a web link to join the meeting. 

The presentation portion of the webinar will last about 45 minutes, followed by about 15 minutes of questions and answers.

Requirements

  • Internet connection
  • Computer with audio input (microphone) and audio output (speakers) appropriate for your size group
  • TV or projector/screen

Zoom logo

The Zoom webinar service EASA uses will ask to install a small plugin. Your computer must be configured to allow this in order to have full functionality. Please check with your IT department or company's security policy prior to scheduling a private webinar.

Private Webinars

EASA's private webinars are an inexpensive way to bring an EASA engineer into your service center, place of business or group meeting without incurring travel expenses or lost production time.

The list below is a sampling of topics that could be made available to your group. Any webinar previously presented by EASA staff could potentially be made available for your meeting!
See other topics presented previously.

ANSI/EASA Standard AR100-2025: Recommended Practice for the Repair of Rotating Electrical Apparatus

ANSI/EASA Standard AR100-2025: Recommended Practice for the Repair of Rotating Electrical Apparatus

ANSI/EASA AR100-2025EASA’s “Recommended Practice for the Repair of Rotating Electrical Apparatus” is designated ANSI/EASA AR100 and was first approved as an American National standard in 1998. Since then, it has been revised and approved in 2001, 2006, 2010, 2015, 2020 and now in 2025.

ANSI/EASA AR100 is a must-have guide to the repair of rotating electrical machines. Its purpose is to establish recommended practices in each step of the rotating electrical apparatus rewinding and rebuilding processes.

The scope of this document describes record keeping, tests, analysis and general guidelines for the repair of induction, synchronous and direct current rotating electrical apparatus. It is not intended to take the place of the customer's or the machine manufacturer's specific instructions or specifications or specific accepted and applicable industry standards or recommended practices.

This document should be supplemented by additional requirements applicable to specialized rotating electrical apparatus including, but not limited to, listed explosion-proof, dust-ignition proof, and other listed machines for hazardous locations; and specific or additional requirements for hermetic motors, hydrogen-cooled machines, submersible motors, traction motors, or Class 1E nuclear service motors.

ANSI recognizes only one standard on a topic; therefore, ANSI/EASA AR100 is the American standard for repair of rotating electrical apparatus.The Recommended Practice is an important publication to distribute both internally and to customers.

Download or Purchase
This document is available as a FREE download (see links below) or printed copies may be purchased from EASA's online store.

DOWNLOAD AR100-2025 BUY PRINTED COPIES

Approval Process
The EASA Technical Services Committee (TSC) reviews the recommended practice and proposes changes; a consensus body group (formerly termed a canvass group) approves and often comments on the TSC proposals. The consensus body group has representation from service centers (producers), end users and those with a gen­eral interest. Per American National Standards Institute (ANSI) requirements, there must be balanced representation among the consensus body group representatives. After the consensus body group and the TSC find consensus agreement, the revised document is approved by the EASA Board of Directors. Following Board approval, ANSI is requested to approve the revi­sion as an American National Standard. The entire process must be completed within five years following the previous revision.

What’s New in 2025?
The 2025 edition of AR100 contains 72 revi­sions, 48 substantive (technical) and 24 editorial. Here, we will focus on the more significant changes, noted in clause order, and some of the reasons for making these changes.

The only revision to AR100 that affected the Accreditation Program Checklist
was to clause 3.11.


1.1 Purpose
Added the sentence “Although repairs are normally performed in a service center, this document also applies to onsite repairs.” This clarifies that AR100 applies to onsite as well as service center repairs.

1.4 Condition Assessment and Failure Investigation
The use of photography was added with the sentence “Photographs of all sides of the equipment can be useful in recording the general condition of the equipment as received, the placement of accessories and machine configuration for records and for comparison during the final inspection of the completed repair.” This not only acknowledges that photography should be used, it provides rationale for using it.

1.6 Terminal Leads
Added a sentence describing what to do if customer lead markings differ from NEMA or IEC standards.  This is also the first location in the document with reference to the standard NEMA MG 00001, the successor to NEMA MG 1.

2.1.2 Permissible Runout
Permissible shaft extension runout tolerance Tables 2-3 (NEMA machines) and 2-4 (IEC machines) replaced with Table 2-3 “RPM versus Allowable Total Indicated Runout.  The runout tables from NEMA and IEC were based on shaft dimensions, and the replacement table is more practical and simpler to use, with tolerances based on shaft speed.

2.2.2.1 Sleeve Bearing End-Thrust
Expanded on the topic of sleeve bearing end-thrust to include use of limited end float couplings and added a new table with tolerances for end play and rotor float designated Table 2-8 “End Play and Rotor Float for Coupled Sleeve Bearing Horizontal Motors”.

2.5 Laminated Cores
A good practice action item was provided by adding the sentence “If evidence of hot spots is noted, perform a core loss test.”

2.5.1 Rotating Elements
Separate runout tolerances for 2 pole and for 4 or more pole machines are provided in the two sentences “The runout of the rotating element core outside diameter relative to the bearing journals should not exceed 5 percent of the average radial air gap for machines with 4 or more poles. For 2 pole machines the runout should not exceed 0.003” (0.08 mm).” The previous edition used a single tolerance regardless of poles.

2.7 Slip Rings
Added a tolerance for maximum total indicated runout for speeds below 2500 ft/min (760 m/min) as well as for speeds below 5000 ft/min (1525 m/min) and for greater than 5000 ft/min (1525 m/min). The previous edition provided two tolerances, one for speeds below 5000 ft/min (1525 m/min) and one for greater than 5000 ft/min (1525 m/min).

2.8.2 Undercutting and beveling
Provides a good practice method for chamfering commutator bars with the statement “Both edges of each bar should be chamfered, either by hand-chamfering or by nylon brush designed for that purpose. This minimizes brush chatter and noise in operation, and extends brush life.”

2.11 Brush Setting for DC Machines
A good practice action item was provided indicating to add equalizing jumpers to all brush posts of DC machines that lack them with the statement “Brush posts of the same polarity should have equalizing jumpers connecting them. This applies to positive as well as negative brush posts.” Doing so reduces the likelihood of sparking at the brushes due to unequal voltage at brush posts of the same polarity.

3.3 Stripping of Windings
The sentence “Core temperature should be controlled to avoid degradation of the interlaminar insulation and distortion of any parts” was revised to “Core temperature should be controlled to avoid degradation of the interlaminar insulation and distortion of the stator frame.” The change provides focus and clarifies that core temperature control is intended to avoid distortion of the stator frame.

3.6 Stator, Rotor and Armature Coils
Good practice action item added regarding replacing surge rings with sentence “Surge rings or similar supports should be replaced as found.”

3.6.2 Form-Wound Coils
To harmonize with the change made in clause 3.6 the sentence “Surge rings or similar supports should be secured to the coils and the coils laced to one another as necessary to minimize coil distortion and movement” was deleted.

3.7.1 Stationary Coils
In addition to varnish treatment and vacuum pressure impregnation of stationary field coils, the wet winding method was added to indicate that it is also a treatment option.

3.8 Squirrel Cage and Amortisseur Windings
To help prevent performance issues with motors and generators, particularly when starting, the following caution was added “Synchronous rotors often have amortisseur bars of different materials.”

3.9 Shaping and Lacing of Stator Windings
Good practice guidance for replacing metal surge rings with surge rope is given in the new sentence “Metal surge rings can be replaced with surge rope of the same or larger diameter to avoid inductive heating or potential ground fault.”

3.11 Wedges
With the use of magnetic wedges in form wound stators becoming more prevalent, information and guidance regarding magnetic wedges was expanded on in this clause.  The revised sentence and a new sentence are:

Magnetic wedges should be replaced with equivalent or better magnetic properties magnetic wedges. Caution: Replacing magnetic wedges with nonmagnetic wedges can result in a winding temperature rise of 20°C or more as well as an increase in no-load current, and negatively affect motor performance.

The revised sentence, which added “or better” will be included in the applicable criterion in Item 13 of the revised Accreditation Checklist. Conformance to it will be effective January 2027.

4.2.2 Polarization Index (P.I.) Test
Because the polarization index test often does not apply to random windings the following paragraph addressing this, and providing an alternate test method, was added: This test may not apply to random winding machines since the absorption current becomes negligible in a matter of seconds. A 60/30 second IR ratio test may be performed, with an acceptance ratio of 1.5. (Reference: IEEE Std. 1068, 6.3.1l).

4.2.4 Form-Wound Stator Surge Tests
The following new sentence provides guidance for testing uncured coils so as to help prevent failure due to testing at too high a voltage: Test voltages are reduced for uncured coils and should be agreed upon in advance by the coil manufacturer, service center, and if required, the customer.

4.2.8 Phase Balance Test
The clause text was expanded to provide specific test parameters for the level of voltage to be applied and the time duration. The clause now reads: The phase balance test applies balanced reduced voltage, about 15-20% of rated voltage, 3-phase power to the stator and the current is measured and checked for balance. The test duration should not ex­ceed 5 minutes, and the expected test current should be approximately the rated current.

4.3.3 Armature Windings
Clarified the term “bar-to-bar” by identifying the two types of bar-to-bar test, the high-frequency bar-to-bar test and the low-resistance bar-to-bar test.

4.5.1 Speed
Provided guidance for test running a motor when rated frequency is not available by adding the sentence: When rated frequency is not available, test run at a proportional volts/Hz ratio, without exceeding rated voltage or maximum speed.

Conclusion
The efforts of the Technical Services Committee to revise and improve AR100 are a continual process. Within a year or two, the revision process will become an active agenda item for the TSC. One of the foremost goals with AR100 is to include as many good practices as possible. Further, when it is desired or necessary to add new good practices to the Accreditation Program, AR100 is the conduit. The reason for this approach is that AR100 is the primary source document for the EASA Accreditation Program.

Since AR100 is revised periodically it is a “living document.” Changes to AR100 not only aid with the Accreditation Program, its good practices and other guidance help enable service centers to provide quality repairs that maintain or at times improve rotating electrical apparatus reliability and energy efficiency.

Available Downloads

Best AC Rewind Practices

Best AC Rewind Practices

Electrom InstrumentsPresented by Chuck Yung
EASA Senior Technical Support Specialist

This webinar recording shares some of the “best practice” rewind methods used by (and learned from) EASA service centers around the world: connection recognition, best insulating materials, wire choices and tips to save time and effort. Topics covered include:

  • Slot liner, separators and phase insulation
  • Managing voltage stresses
  • Making the connection: solder, crimp fittings or silphos
  • Lacing tips
  • Testing the completed winding

This webinar is intended for experienced and prospective winders, and those who supervise winders.

Available Downloads

Consejos para rebobinar motores de alambre redondo de 2300 Voltios

Consejos para rebobinar motores de alambre redondo de 2300 Voltios

Chuck Yung
Especialista Sénior de Soporte Técnico de EASA 

Al rebobinar un motor, el centro de servicio a menudo se siente limitado al diseño original y en ocasiones, nos encontramos con un diseño que desearíamos que nunca se hubiera llevado a cabo. El diseño del motor de 2300 voltios con bobinas de alambre redondo entra en esa categoría. La mayoría preferiríamos máquinas de media tensión (2300-4160 voltios) construidas exclusivamente con bobinas de alambre rectangular (solera o pletina). Este bobinado preformado (Figura 1) garantiza voltios/espira uniformes y sella los bobinados de forma confiable contra entornos hostiles.

Desde la perspectiva del fabricante, un motor de 2300 voltios con bobinas de alambre redondo representa una reducción sustancial en el costo de fabricación. Para el centro de servicio, el reto es rebobinarlos correctamente y, al mismo tiempo, ofrecer una reparación confiable.

Available Downloads

Devanados para motores trifásicos Inverter Duty

Devanados para motores trifásicos Inverter Duty

Tom Bishop, PE
Especialista Sénior de Soporte Técnico de EASA 

Con la llegada de los variadores de frecuencia electrónicos (VFD) de estado sólido a fines de la década de 1980, se descubrió que los bobinados de los motores que funcionaban con VFDs fallaban con más frecuencia que al estar alimentados con la energía convencional (onda sinusoidal). A principios de siglo, los fabricantes de motores habían comprendido mejor cómo los VFD afectaban los devanados del motor, y al igual que los proveedores de materiales electro aislantes habían desarrollado materiales y métodos para mejorar la confiabilidad de los devanados de los motores alimentados con VFDs. El término general para los devanados es "inverter duty (a prueba de inversor)". En este artículo, describiremos los materiales y métodos asociados con los devanados inverter duty. 

Alambre magneto
Antes de que se desarrollara el alambre “spike-resistant (resistente a picos)” a finales de la década de los 90s, una práctica común para bobinar los motores que funcionaban con VFDs consistía en utilizar alambre con un aislamiento más grueso a base de poliéster y algunos de ellos utilizaban películas de aislamiento triples o cuádruples. Estos alambres son muy efectivos cuando se les somete a voltajes de onda sinusoidal o voltajes transitorios intermitentes. Los alambres con aislamiento para trabajo pesado (heavy duty) son efectivos contra el efecto corona (Figura 1) porque la distancia entre los conductores reales es mayor con el aislamiento agregado. Esta mayor separación entre los conductores individuales obliga a que cualquier voltaje que se presente entre los conductores sea menor. Sin embargo, cuando la forma de onda del VFD somete a esfuerzos los alambres, la rigidez dieléctrica de los alambres con aislamiento para trabajo pesado, no es tan efectiva. Los alambres magneto modernos utilizados para motores con inversores tienen mayor capacidad dieléctrica con una vida útil más significativa (Figura 2). También pueden soportar picos de voltaje mejor que el alambre con aislamiento para trabajo pesado, pero con la misma estructura que el alambre magneto estándar. La Figura 3 ilustra el impacto en la vida útil del alambre magneto a medida que aumenta la frecuencia de conmutación de un variador. La vida del alambre con aislamiento de trabajo pesado se ve muy afectada, mientras que la del alambre inverter duty no se acorta por la frecuencia de conmutación. 

Usar alambres con mayor diámetro aumentará el voltaje donde comienza a producirse el efecto corona. Por eso, al rebobinar motores inverter duty puede ser importante utilizar la menor cantidad de alambres más gruesos disponibles. Al contrario, los alambres más delgados tienen menos pérdidas por efecto superficial a frecuencias más altas, como la frecuencia portadora de un variador. El efecto superficial hace que la corriente en un conductor redondo esté cerca de la superficie, y la frecuencia portadora es la velocidad a la que el voltaje de CC se "corta" en segmentos para simular la potencia de una onda sinusoidal. Si la frecuencia portadora es alta, por ejemplo, 12 kHz o más, utilice alambres con diámetros más pequeños si es posible; de lo contrario, considere utilizar alambres más gruesos. 

Llenado de ranura y sistema de aislamiento
Incluso el mejor sistema de aislamiento eventualmente comenzará a fallar, especialmente con el uso de un VFD. Para mayor resistencia eléctrica y mecánica, un diseño típico inverter duty maximizará el llenado de la ranura. Esto aumenta la eficiencia y permite que el motor funcione más frío, y también ayuda a evitar el movimiento de las bobinas que puede romper el aislamiento. Es una buena práctica utilizar amarres en al menos cada 3.ª o 4.ª cabezas de bobina, en el lado conexión y lado opuesto conexión para sujetar aún más el devanado.

Como lo ilustra la Figura 4, el fallo más común de los devanados que funcionan con VFDs ocurre en las primera(s) vuelta(s) conectada(s) al cable de salida, por lo que como protección eléctrica adicional algunos bobinados la primera vuelta de las bobina(s) conectada(s) al cable de salida pueden estar aislada(spaguetti). El aislamiento entre fases está diseñado para separar las bobinas de las diferentes fases. La mayor parte de la magnitud de los picos de voltaje vistos por el devanado se concentra en las bobinas conectadas a los cables de salida. Las vueltas inicial y final de una bobina de alambre redondo pueden estar en contacto y se puede presentar un pico de voltaje entre esos dos alambres adyacentes, así como a través de las bobinas. Debido a que los picos de voltaje pueden alcanzar los 2000 voltios o más, también se debe usar aislamiento de ranura adicional para el voltaje más alto, siempre que no sea necesario reducir la sección del alambre para poder insertar el bobinado en las ranuras. Maximice el aislamiento y utilice separadores en las ranuras y vueltas finales. Un motor que funciona con un VFD normalmente se calienta más que el mismo motor alimentado con una onda sinusoidal. Si la temperatura del devanado es 10°C más alta, la vida térmica útil del aislamiento se reduce a la mitad. El aislamiento Clase H (180 °C) tiene una clasificación de temperatura más alta que los devanados Clase B o F (130 °C o 155 °C), por lo que se puede extender la vida útil del devanado. Cuando el motor funciona a una velocidad inferior a la nominal o base, la disminución del flujo de aire hará que el devanado del motor se caliente más. Por esta razón, es ventajoso un sistema de aislamiento Clase H (180°C). 

Impregnación y barniz
Se debe utilizar un proceso de doble inmersión y horneado. Si está disponible, una mejor alternativa sería sumergir y hornear(dip & bake)seguido de impregnación por presión y vacío (VPI) y luego secar. Asegúrese de seguir las instrucciones del fabricante del barniz/resina en cuanto a la temperatura de precalentamiento del bobinado como támbién la temperatura y el tiempo de curado. Tenga en cuenta que el tiempo de curado no comienza hasta que el devanado se haya calentado a la temperatura mínima de curado recomendada para el barniz/resina. Precaución: La mayoría de los alambres magneto tienen una capa lubricante que se utiliza para facilitar su fabricación. El proceso de precalentamiento del devanado tiene dos propósitos: Primero, evaporar el lubricante del alambre, lo que luego permite que el barniz/resina se adhiera al conductor y el segundo es que ayude a aliviar las tensiones residuales en la película aislante del alambre para que este no se agriete (crazing). 

Técnica de bobinado inverter
Cuando se fabrica o rebobina un motor que funciona con un VFD, se debe tener mucho cuidado al insertar las bobinas en las ranuras para evitar que la película aislante del alambre no se raye ni se pele. Es una buena práctica utilizar papel mylar en las ranuras para ayudar a la inserción de las bobinas y protegerlas de daños. Algunos fabricantes utilizan una técnica de bobinado que hace que quede menos "aleatorio" al alinear el alambre en las ranuras empleando un espaciado más ordenado de las vueltas. La idea es mantener el principio y el final de las bobinas lo más alejados posible entre sí para reducir la magnitud del voltaje entre los conductores adyacentes. Las máquinas bobinadoras semiautomáticas utilizadas en los centros de servicio se acercan a este nivel de espaciado ordenado de las vueltas. 

Especificaciones para bobinados inverter duty
La siguiente es una especificación guía para un sistema inverter duty. 

General 

  • Aislamiento Clase H o superior 

Alambre magneto 

  • Inverter duty 

Sección del conductor 

  • Conserve o aumente la sección transversal 
  • Conserve o aumente el número de alambres (reduce las pérdidas por corrientes parásitas 

Aislamiento 

  • Separadores entre fases 
  • Como mínimo aislamiento a tierra de 0.015” (0.38 mm) 
  • Arriba de 80 voltios por bobina instale separadores en la mitad de cada grupo 

Atado y soporte 

  • Amarre al menos cada tercera o cuarta bobina 
  • Encinte las cabezas con un mínimo de 3 medias capas de de vidrio virgen [1 pulgada (25 mm)] a partir de 1 pulgada (25 mm) del núcleo hasta 1 pulgada de las puntas 

Impregnación 

  • Pre caliente el barníz de acuerdo con las instrucciones del fabricante 
  • Sumerja y cure(dip & bake) dos veces 
  • Cure durante el mayor tiempo recomendado por el fabricante 
  • Note que el tiempo de curado no comienza hasta que el devanado se haya calentado a la temperatura de curado

Available Downloads

Inverter Duty Three-Phase Motor Windings

Inverter Duty Three-Phase Motor Windings

Tom Bishop, PE
EAS A Senior Technical Support Specialist 

With the advent of solid-state electronic variable frequency drives (VFDs) in the late 1980s, it was found that the windings of motors used on VFDs failed more frequently than when powered by a utility (sine wave) supply. By the turn of the century, motor manufacturers had gained a better understanding of how VFDs affected motor windings, and motor manufacturers and suppliers of winding materials had developed materials and methods to improve the reliability of motor windings supplied from VFDs. The general term for the windings is “inverter duty.” In this article, we will describe the materials and methods associated with inverter duty windings.

Available Downloads

Norma EASA AR100-2025: Práctica Recomendada para la Reparación de Máquinas Eléctricas Rotativas

Norma EASA AR100-2025: Práctica Recomendada para la Reparación de Máquinas Eléctricas Rotativas

EASA AR100-2025 coverLa Práctica Recomendada para la Reparación de Máquinas Eléctricas Rotativas está designada como ANSI/EASA AR100 e inicialmente fue aprobada como norma nacional americana en 1998. Desde entonces, ha sido revisada y aprobada cinco veces más en 2001, 2006, 2010, 2015, 2020 y ahora en el 2025.

La norma ANSI/EASA AR100 es una guía indispensable para la reparación de máquinas eléctricas rotativas. Su propósito es establecer prácticas recomendadas en cada etapa de los procesos de rebobinado y reconstrucción de aparatos eléctricos rotativos.

El alcance de este documento describe el registro de datos, las pruebas, el análisis y las directrices generales para la reparación de aparatos eléctricos rotativos de inducción, síncronos y de corriente continua. No pretende sustituir las instrucciones o especificaciones específicas del cliente o del fabricante de la máquina, ni las normas o prácticas recomendadas de la industria, aceptadas y aplicables.

Este documento debe complementarse con requisitos adicionales aplicables a aparatos eléctricos rotativos especializados, incluyendo, entre otros, máquinas antideflagrantes, a prueba de ignición por polvo y otras máquinas certificadas para ubicaciones peligrosas; y requisitos específicos o adicionales para motores herméticos, máquinas refrigeradas por hidrógeno, motores sumergibles, motores de tracción o motores de servicio nuclear de Clase 1E.

ANSI reconoce una sola norma por tema; por lo tanto, ANSI/EASA AR100 es la norma estadounidense para la reparación de aparatos eléctricos rotativos. Esta práctica recomendada es una publicación importante que debe distribuirse tanto internamente como a los clientes.

Descargar
Este documento está disponible para su descarga gratuita (ver el enlace a continuación).

DESCARGAR AR100-2025

Proceso de aprobación
El Comité de Servicios Técnicos (TSC) de EASA revisa la práctica recomendada y propone cambios; un grupo de consenso (anteriormente denominado grupo de consulta) aprueba y, con frecuencia, comenta las propuestas del TSC. Este grupo cuenta con representación de centros de servicio (productores), usuarios finales y personas con intereses generales. Según los requisitos de la American National Standards Institute (ANSI), debe haber una representación equilibrada entre los representantes del grupo de consenso. Tras un acuerdo dentre el grupo de consenso y el TSC, el documento revisado es aprobado por la Junta Directiva Internacional de EASA. Tras la aprobación de la Junta, se solicita a ANSI que apruebe la revisión como Norma Nacional Estadounidense. Todo el proceso se debe completar en un plazo de cinco años contados a partir de la última revisión. 

¿Qué hay nuevo en la versión 2025?
La edición 2025 de la AR100 contiene 72 revisiones, 48 de carácter sustantivo (técnico) y 24 de carácter editorial. En este artículo, nos centraremos en los cambios más significativos, indicados en el orden de las cláusulas, y en algunas de las razones que los justificaron. La única revisión de la AR100 que afectó a la Lista de Verificación del Programa de Certificación de EASA fue la de la cláusula 3.11, que se describe más adelante en la información correspondiente a dicha cláusula.

La única revisión del AR100 que afectó la Lista de Verificación del Programa de Acreditación fue clause 3.11.


1.1 Objetivo
Se añadió la frase “Aunque las reparaciones normalmente se realizan en un centro de servicio, este documento también aplica a las reparaciones in situ” Esto clarifica que la AR100 aplica tanto a reparaciones en los centros de servico como in situ. 

1.4 Condiciones de Evaluación e Investigación de Fallos
Se añadió al uso de la fotografía la frase "Las fotografías de todos los lados del equipo pueden ser útiles para registrar al momento de la recepción, el estado general, la ubicación de los accesorios y la configuración de la máquina, tanto para fines de registro como para compararlas durante la inspección final una vez completada la reparación", Esto no solo reconoce la importancia del uso de la fotografía, sino que también la justifica. 

1.6 Cables de Salida
Se añadió una oración que describe qué hacer si las marcas de los cables del cliente difieren de las normas NEMA o IEC. Esta es también la primera referencia del documento a la norma NEMA MG 00001, sucesora de la NEMA MG 1. 

2.1.2 Excentricidad Permitida
Las Tablas 2-3 (máquinas NEMA) y 2-4 (máquinas IEC) de tolerancia de excentricidad admisible para ejes de salida se reemplazaron por la “Tabla 2-3. RPM versus excentricidades permisibles”. Las tablas de excentricidades NEMA e IEC se basaban en las dimensiones del eje, y la tabla sustituta es más práctica y sencilla de usar, con tolerancias basadas en la velocidad del eje. 

2.2.2.1 Empuje Axial de los Cojinetes de Deslizamiento
Se amplió el tema del empuje axial de los cojinetes de deslizamiento para incluir el uso de acoplamientos con desplazamiento axial limitado y se añadió una nueva tabla con tolerancias para el juego y desplazamiento axial del rotor, denominada "Tabla 2-8. Juego y desplazamiento axial del rotor para máquinas de inducción horizontales con cojinetes de deslizamiento". 

2.5 Núcleos Laminados
Se agregó una buena práctica con la oración “Si se detectan puntos calientes, realice una prueba de pérdidas en el núcleo”. 

2.5.1 Partes Rotativas
Se proporcionan tolerancias de excentricidad independientes para máquinas de 2 y 4 polos o más en las dos frases siguientes: "La desviación del diámetro exterior del elemento rotativo con respecto a los muñones del eje donde se instalan los rodamientos no debe exceder el 5 % del entrehierro promedio para máquinas de 4 o más polos. Para máquinas de 2 polos, la desviación no deberá superar las 0,003" (0,08 mm)". La edición anterior utilizaba una tolerancia única, independientemente del número de polos. 

2.7 Anillos Rozantes
Se añadió una tolerancia para la desviación máxima total indicada para velocidades por debajo de 760 m/min (2500 pies/min), así como para velocidades inferiores a 1525 m/min (5000 pies/min) y superiores a 1525 m/min (5000 pies/min). La edición anterior ofrecía dos tolerancias: una para velocidades inferiores a 1525 m/min (5000 pies/ min) y otra para velocidades superiores a 1525 m/min (5000 pies/min). 

2.8.2 Ranurado y Biselado
Proporciona un buen método para biselar las barras del colector con la siguiente afirmación: "Ambos bordes de cada delga se deben biselar, ya sea manualmente o con un cepillo de nailon diseñado para tal fin. Esto minimiza las vibraciones y el ruido durante el funcionamiento y prolonga la vida útil de la escobilla". 

2.11 Ajuste de las Escobillas para Máquinas de Corriente Contínua
Se proporcionó una buena práctica que indicaba agregar puentes de compensación en todos los postes de escobillas de las máquinas de corriente contínua que no los tuvieran, con la siguiente advertencia: "Los postes de las escobillas de la misma polaridad deben estar conectados entre sí mediante puentes de compensación. Esto se aplica tanto a los bornes de escobilla positivos como a los negativos". Esto reduce la probabilidad de chispas en las escobillas debido a la diferencia de voltaje en los bornes de escobilla con la misma polaridad. 

3.3 Desmantelamiento de los Devanados
La oración “Para evitar degradación del aislamiento interlaminar y la distorsión de cualquiera de sus partes” fue reescrita como: “Para evitar degradación del aislamiento interlaminar y la distorsión de la carcasa del estator”. El cambio proporciona un enfoque y aclara que el control de la temperatura del núcleo tiene como objetivo evitar la distorsión de la carcasa del estator. 

3.6 Bobinas de estatores, rotores y armaduras
Se añade una buena práctica relacionada con el reemplazo de los aros/cordeles de refuerzo o soportes con la oración “Los aros/cordeles de refuerzo o soportes similares deben ser reemplazados tal como fueron encontrados” 

3.6.2 Bobinas de Pletina (Solera)
Para armonizar con el cambio hecho en 3.6 se borró la oración:"Para evitar su movimiento y distorsión, las bobinas deben estar atadas entre si y aseguradas a aros de sujeción u otros medios de soporte similares, tal como se considere necesario" 

3.7.1 Bobinas Estáticas
Adicionalmente al tratamiento con barniz o impreganación al vacio (VPI) se adicionó el método de enresinado para indicar que es otra opción. 

3.8 Bobinados de Amortiguación y Jaulas de Ardilla
Para ayudar a prevenir problemas de rendimiento con motores y generadores, particularmente al arrancar, se agregó la siguiente advertencia: "Los rotores síncronos suelen tener barras amortiguadoras de diferentes materiales" 

3.9 Moldeado y Atado de los Bobinados del Estator
En la nueva oración se proporciona una guía de buenas prácticas para reemplazar los aros o anillos de soporte metálicos por cordones: "Los aros o anillos de soporte metálicos se pueden reemplazar por cordones de al menos el mismo diámetro para evitar el calentamiento por inducción o posibles fallos a tierra". 

3.11 Cuñas
Dado el uso cada vez más frecuente de cuñas magnéticas en estatores de bobinas de pletina, se amplió la información y la orientación sobre ellas en esta cláusula. La oración revisada y la nueva frase son las siguientes: 

“Las cuñas magnéticas se deben reemplazar por cuñas con mejores propiedades magnéticas o equivalente. Precación: Cambiar cuñas magnéticas por otras no magnéticas puede provocar un aumento de la temperatura del bobinado de 20°C o más, así como también un incremento de la corriente en vacío, lo que afectará negativamente el rendimiento del motor”. 

La frase revisada, que añadió "o mejor", se incluirá en el criterio aplicable del punto 13 de la Lista de Comprobación de la Certificación revisada. Su cumplimiento entrará en vigor en enero de 2027. 

4.2.2 Prueba de índice de Polarización (I.P)
Ya que la prueba del índice de polarización no se suele aplicar a bobinados de alambre redondo, se añadió el siguiente párrafo que aborda este tema y proporciona un método de prueba alternativo:"Esta prueba podría no aplicar a las máquinas de alambre redondo, ya que la corriente de absorción se vuelve insignificante en cuestión de segundos. Se puede realizar una prueba de relación de resistencia de aislamiento de 60/30 segundos, con una relación de aceptación de 1,5. (Referencia: IEEE Std. 1068, 6.3.1l)". 

4.2.4 Pruebas de Impulso (Surge) en Estatores con Bobinas de Pletina (Solera)
La siguiente nueva oración proporciona orientación para probar bobinas sin curar a fin de ayudar a prevenir fallos debido a pruebas hechas con un voltaje demasiado alto: 

“Los niveles de prueba se reducen para las bobinas sin curar (green) y deben ser acordados con anticipación entre el fabricante de bobinas, el centro de servicio y, si es necesario, el cliente”.

4.2.8 Pruebas de Equilibrio entre Fases
El texto de la cláusula se amplió para proporcionar parámetros de prueba específicos para el nivel de voltaje aplicado y su duración. La cláusula ahora dice: "En la prueba de equilibrio de fases se aplica al estator un voltaje trifásico balanceado de un 15 a 20% la tensión nominal y se miden las corrientes para comprobar si están balanceadas. La duración de la prueba no debe exceder 5 minutos y la corriente esperada puede ser aproximadamente la nominal". 

4.3.3 Bobinados de Armadura
Se clarifica el término “delga-delga” identificando los dos tipos de pruebas delga-delga: Alta frecuencia y baja resistencia. 

4.5.1 Velocidad
Se proporcionó orientación para la prueba de funcionamiento de un motor cuando no se dispone de la frecuencia nominal, añadiendo la frase: "Si la frecuencia nominal no está disponible se puede utilizar una relación voltio/Hz proporcional, sin exceder el voltaje nominal o la velocidad máxima”. 

Conclusión
Los esfuerzos del Comité de Servicios Técnicos (TSC) para revisar y mejorar la AR100 son un proceso continuo. Dentro de uno o dos años, el proceso de revisión se convertirá en un tema activo en la agenda del TSC. Uno de los principales objetivos de la AR100 es incluir el mayor número posible de buenas prácticas. Además, cuando se desee o sea necesario añadir nuevas buenas prácticas al Programa de Certificación, la AR100 actúa como conducto. La razón de este enfoque es que la AR100 es el documento fuente principal del Programa de Certificación de EASA. 

Dado que la AR100 se revisa periódicamente, es un documento en constante evolución. Los cambios en la AR100 no solo contribuyen al Programa de Certificación, sino que sus buenas prácticas y otras directrices permiten a los centros de servicio realizar reparaciones de calidad que mantienen, e incluso mejoran, la confiabilidad y la eficiencia energética de las máquinas eléctricas rotativas.

Available Downloads

Rewind Tips For 2300-Volt, Random-Wound Motors

Rewind Tips For 2300-Volt, Random-Wound Motors

Chuck Yung
EASA Senior Technical Support Specialist 

When rewinding a motor, the service center often feels restricted to the original design. Sometimes, we encounter a motor design we wish had never been developed. The random-wound, 2300-volt motor design falls into that category. Most of us would prefer to see medium voltage (2300-4160 volt) machines built exclusively using form coils. The form coil winding (Figure 1) assures uniform volts/turn stresses and reliably seals the windings against hostile environments.

From the manufacturer’s perspective, a random-wound, 2300 volt motor represents a substantial reduction in manufacturing cost. For the service center, the challenge is to successfully rewind them while providing a reliable repair.

Available Downloads