Facebook Twitter LinkedIn YouTube Menu Search Arrow Right Arrow Left Arrow Down Arrow Up Home Arrow Next Arrow Previous RSS Icon Calendar Icon Warning Icon

How to schedule

To schedule private education for your group, contact:

Dale Shuter, CMP
Meetings & Expositions Manager

+1 314 993 2220, ext. 3335
dshuter@easa.com

1 hour of training

$300 for EASA Chapters/Regions
$400 for member companies
$800 for non-members

How a webinar works

All EASA private webinars are live events in which the audio and video are streamed to your computer over the Internet. Prior to the program, you will receive a web link to join the meeting. 

The presentation portion of the webinar will last about 45 minutes, followed by about 15 minutes of questions and answers.

Requirements

  • Internet connection
  • Computer with audio input (microphone) and audio output (speakers) appropriate for your size group
  • TV or projector/screen

Zoom logo

The Zoom webinar service EASA uses will ask to install a small plugin. Your computer must be configured to allow this in order to have full functionality. Please check with your IT department or company's security policy prior to scheduling a private webinar.

Private Webinars

EASA's private webinars are an inexpensive way to bring an EASA engineer into your service center, place of business or group meeting without incurring travel expenses or lost production time.

Cool advice on hot motors

Cool advice on hot motors

By Jim Bryan
EASA Technical Support Specialist (retired)

The effects of excessive temperature on motor performance are notorious. After moisture, they are the greatest contributor to bearing and winding failures. Understanding the source of increased temperature is key to correcting the problem and improving the reliability of your facility’s motor fleet.

Topics in this article cover:

  • Overload and service factor
  • Ventilation
  • Voltage variation
  • Electrical steel
  • Current density
  • Circulating currents
  • Harmonics

READ THE ARTICLE

Cool facts about cooling electric motors

Cool facts about cooling electric motors

Improvements in applications that fall outside the normal operating conditions

By Chuck Yung
EASA Senior Tecnical Support Specialist

The evolution of electric motor design as it pertains to cooling methods provides insights about better ways to cool machines in service. The array of methods engineers have devised to solve the same problems are fascinating yet reassuring because many things remain unchanged even after a century of progress. This article discusses how motors are cooled and how heat dissipation can be improved for applications that fall outside the normal operating conditions defined by the National Electrical Manufacturers Association (NEMA) Standard MG 1.

READ THE FULL ARTICLE

Cool facts about cooling electric motors

Cool facts about cooling electric motors

Whether old or new design, lowering temperatures based on same principles

Chuck Yung
EASA Senior Technical Support Specialist

I’ve often commented on how for­tunate we are to work on such a variety of electric motor designs. One day, you are working on a new design some designer has recently created, and the next day you are repairing a motor that could be in a museum. It’s fascinating to see the different ways engineers have devised to do the same thing, and yet reassuring to see how many things remain unchanged even after a century of electric motors. 

One aspect of electric motors that could be placed in both categories is the way an electric motor is cooled. This article takes a look at how motors are cooled and how we can improve cool­ing for some of the special applications we encounter.

Available Downloads

Fan law knowledge can help performance

Fan law knowledge can help performance

Chuck Yung 
EASA Technical Support Specialist 

Most of us involved in the repair of electrical equipment have a good understanding of how an electric motor works–especially the stator and ro­tor. But the fan can appear deceptively simple. Fans are pretty interesting, once we learn a few “affinity laws”—rules that also apply to blowers and impellers. This article will review some basic facts about fans that explain how small changes to a fan can make a BIG difference in the following critical areas: 

  • Volume of air moved
  • Static pressure
  • Load
  • Losses (efficiency)

These rules hold true for fan applications, im­pellers in pumping applications, and cooling fans on electric motors. When applied to the external fan of a TEFC (IP-54) motor, these rules offer some real opportunities for efficiency improvement. 

Available Downloads

How to Balance Overhung Fans

How to Balance Overhung Fans

Often an overhung fan is balanced in a single plane, only to find that the vibration has shifted to the outboard bearing. Attempts to use standard two-plane techniques may result in calculated correction weights that are very large and produce poor results. There are more effective ways to approach this common problem. This presentation shows a methodical approach and techniques for tackling this difficult balancing problem.

Target audience: This presentation is intended for field service balancing technicians, supervisors and managers.

Motor Winding Temperature and Detectors to Measure It

Motor Winding Temperature and Detectors to Measure It

This presentation begins with an overview of ambient, winding temperature rise, and winding temperature. It also covers factors for motor temperature rise limits such as motor size (medium or large), insulation class rating, service factor and the enclosure. The final part of the presentation addresses detectors for measuring winding temperature, namely thermostats, resistance temperature detectors (RTDs), thermocouples and thermistors.

Target audience: This presentation is most useful for service center winders, engineers, supervisors and managers. The content will be beneficial for beginners through highly-experienced persons.

Principles of Medium & Large AC Motors, 1st Edition - IEC

Principles of Medium & Large AC Motors, 1st Edition - IEC

This version of Principles of Medium & Large AC Motors manual is now available to address applicable IEC standards and practices. This 360-page manual was developed by industry experts in Europe along with EASA's engineering team. (The "original" version of this book based on NEMA standards remains available as a separate document.)

This manual includes drawings, photos and extensive text and documentation on AC motors, including how they work, information on enclosures, construction on components and applications. Many of the principles included apply to all AC motors, especially those with accessories that are associated with larger machines in the past (such as encoders, RTDs, thermostats, space heaters and vibration sensors).

While the manual covers horizontal and vertical squirrel-cage induction motors in the 37 to 3,700 kW (300 to 5,000 hp) range, low- and medium-voltage, most of the principles covered apply to other sizes as well. 

This valuable instructional/resource manual is available in printed and downloadable versions, and focuses primarily on IEC motors.

Sections in the manual include:
(Download the PDF below for the complete Tables of Contents)

  • Motor nomenclature & definitions
  • Motor enclosures
  • Typical motor applications
  • Safety & handling considerations
  • Basic motor theory
  • Motor standards
  • Stators
  • Squirrel cage rotors
  • Shafts
  • Bearings & lubrication
  • Motor accessories & terminal boxes
  • Test & inspection procedures
  • Motor alignment, vibration & noise
  • Storage procedures
  • Synchronous machines

BUY A COPY FOR YOUR OFFICE

PRINTED BOOK DOWNLOADABLE PDF

This book is also available focusing on NEMA Standards — in both English and Español.

NEMA - English NEMA - Español

Available Downloads

Service factor: What is it and what does it do?

Service factor: What is it and what does it do?

Jim Bryan
EASA Technical Support Specialist (retired)

There are many misconceptions about Service Factor (SF) in the industry. Some feel it is meant for temporary excursions into overload conditions; others consider it to be an allowance for permanent overload. The truth is that it is neither. As defined in the EASA Technical Manual and NEMA MG1, the definition of service factor is:

"A multiplier which, when applied to rated power, indicates a permissible power loading that may be carried under the conditions specified for the service factor."

The NEMA MG1-2011 theory of SF says that a motor is thermally capable of overload to that point within the insulation class at normal service conditions.

Since any increase in load increases the current, this overload will increase the operating temperature of the motor. For every increase of 10ºC, the motor winding expected life is reduced by one-half. It does not matter what the source of that increase in temperature is; overload, poor ventilation, low voltage or high ambient temperature are just a few.

Available Downloads