Private Webinars - EASA | The Electro•Mechanical Authority
Facebook Twitter LinkedIn YouTube Menu Search Arrow Right Arrow Left Arrow Down Arrow Up Home Arrow Next Arrow Previous RSS Icon Calendar Icon Warning Icon

How to schedule

To schedule private education for your group, contact:

Dale Shuter, CMP
Meetings & Expositions Manager

+1 314 993 2220, ext. 3335
dshuter@easa.com

1 hour of training

$500 for EASA Chapters/Regions
$800 for member companies
$1000 for non-members

How a webinar works

All EASA private webinars are live events in which the audio and video are streamed to your computer over the Internet. Prior to the program, you will receive a web link to join the meeting. 

The presentation portion of the webinar will last about 45 minutes, followed by about 15 minutes of questions and answers.

Requirements

  • Internet connection
  • Computer with audio input (microphone) and audio output (speakers) appropriate for your size group
  • TV or projector/screen

Zoom logo

The Zoom webinar service EASA uses will ask to install a small plugin. Your computer must be configured to allow this in order to have full functionality. Please check with your IT department or company's security policy prior to scheduling a private webinar.

Private Webinars

EASA's private webinars are an inexpensive way to bring an EASA engineer into your service center, place of business or group meeting without incurring travel expenses or lost production time.

The list below is a sampling of topics that could be made available to your group. Any webinar previously presented by EASA staff could potentially be made available for your meeting!
See other topics presented previously.

ANSI/EASA Standard AR100-2025: Recommended Practice for the Repair of Rotating Electrical Apparatus

ANSI/EASA Standard AR100-2025: Recommended Practice for the Repair of Rotating Electrical Apparatus

ANSI/EASA AR100-2025EASA’s “Recommended Practice for the Repair of Rotating Electrical Apparatus” is designated ANSI/EASA AR100 and was first approved as an American National standard in 1998. Since then, it has been revised and approved in 2001, 2006, 2010, 2015, 2020 and now in 2025.

ANSI/EASA AR100 is a must-have guide to the repair of rotating electrical machines. Its purpose is to establish recommended practices in each step of the rotating electrical apparatus rewinding and rebuilding processes.

The scope of this document describes record keeping, tests, analysis and general guidelines for the repair of induction, synchronous and direct current rotating electrical apparatus. It is not intended to take the place of the customer's or the machine manufacturer's specific instructions or specifications or specific accepted and applicable industry standards or recommended practices.

This document should be supplemented by additional requirements applicable to specialized rotating electrical apparatus including, but not limited to, listed explosion-proof, dust-ignition proof, and other listed machines for hazardous locations; and specific or additional requirements for hermetic motors, hydrogen-cooled machines, submersible motors, traction motors, or Class 1E nuclear service motors.

ANSI recognizes only one standard on a topic; therefore, ANSI/EASA AR100 is the American standard for repair of rotating electrical apparatus.The Recommended Practice is an important publication to distribute both internally and to customers.

Download or Purchase
This document is available as a FREE download (see links below) or printed copies may be purchased from EASA's online store.

DOWNLOAD AR100-2025 BUY PRINTED COPIES

Approval Process
The EASA Technical Services Committee (TSC) reviews the recommended practice and proposes changes; a consensus body group (formerly termed a canvass group) approves and often comments on the TSC proposals. The consensus body group has representation from service centers (producers), end users and those with a gen­eral interest. Per American National Standards Institute (ANSI) requirements, there must be balanced representation among the consensus body group representatives. After the consensus body group and the TSC find consensus agreement, the revised document is approved by the EASA Board of Directors. Following Board approval, ANSI is requested to approve the revi­sion as an American National Standard. The entire process must be completed within five years following the previous revision.

What’s New in 2025?
The 2025 edition of AR100 contains 72 revi­sions, 48 substantive (technical) and 24 editorial. Here, we will focus on the more significant changes, noted in clause order, and some of the reasons for making these changes.

The only revision to AR100 that affected the Accreditation Program Checklist
was to clause 3.11.


1.1 Purpose
Added the sentence “Although repairs are normally performed in a service center, this document also applies to onsite repairs.” This clarifies that AR100 applies to onsite as well as service center repairs.

1.4 Condition Assessment and Failure Investigation
The use of photography was added with the sentence “Photographs of all sides of the equipment can be useful in recording the general condition of the equipment as received, the placement of accessories and machine configuration for records and for comparison during the final inspection of the completed repair.” This not only acknowledges that photography should be used, it provides rationale for using it.

1.6 Terminal Leads
Added a sentence describing what to do if customer lead markings differ from NEMA or IEC standards.  This is also the first location in the document with reference to the standard NEMA MG 00001, the successor to NEMA MG 1.

2.1.2 Permissible Runout
Permissible shaft extension runout tolerance Tables 2-3 (NEMA machines) and 2-4 (IEC machines) replaced with Table 2-3 “RPM versus Allowable Total Indicated Runout.  The runout tables from NEMA and IEC were based on shaft dimensions, and the replacement table is more practical and simpler to use, with tolerances based on shaft speed.

2.2.2.1 Sleeve Bearing End-Thrust
Expanded on the topic of sleeve bearing end-thrust to include use of limited end float couplings and added a new table with tolerances for end play and rotor float designated Table 2-8 “End Play and Rotor Float for Coupled Sleeve Bearing Horizontal Motors”.

2.5 Laminated Cores
A good practice action item was provided by adding the sentence “If evidence of hot spots is noted, perform a core loss test.”

2.5.1 Rotating Elements
Separate runout tolerances for 2 pole and for 4 or more pole machines are provided in the two sentences “The runout of the rotating element core outside diameter relative to the bearing journals should not exceed 5 percent of the average radial air gap for machines with 4 or more poles. For 2 pole machines the runout should not exceed 0.003” (0.08 mm).” The previous edition used a single tolerance regardless of poles.

2.7 Slip Rings
Added a tolerance for maximum total indicated runout for speeds below 2500 ft/min (760 m/min) as well as for speeds below 5000 ft/min (1525 m/min) and for greater than 5000 ft/min (1525 m/min). The previous edition provided two tolerances, one for speeds below 5000 ft/min (1525 m/min) and one for greater than 5000 ft/min (1525 m/min).

2.8.2 Undercutting and beveling
Provides a good practice method for chamfering commutator bars with the statement “Both edges of each bar should be chamfered, either by hand-chamfering or by nylon brush designed for that purpose. This minimizes brush chatter and noise in operation, and extends brush life.”

2.11 Brush Setting for DC Machines
A good practice action item was provided indicating to add equalizing jumpers to all brush posts of DC machines that lack them with the statement “Brush posts of the same polarity should have equalizing jumpers connecting them. This applies to positive as well as negative brush posts.” Doing so reduces the likelihood of sparking at the brushes due to unequal voltage at brush posts of the same polarity.

3.3 Stripping of Windings
The sentence “Core temperature should be controlled to avoid degradation of the interlaminar insulation and distortion of any parts” was revised to “Core temperature should be controlled to avoid degradation of the interlaminar insulation and distortion of the stator frame.” The change provides focus and clarifies that core temperature control is intended to avoid distortion of the stator frame.

3.6 Stator, Rotor and Armature Coils
Good practice action item added regarding replacing surge rings with sentence “Surge rings or similar supports should be replaced as found.”

3.6.2 Form-Wound Coils
To harmonize with the change made in clause 3.6 the sentence “Surge rings or similar supports should be secured to the coils and the coils laced to one another as necessary to minimize coil distortion and movement” was deleted.

3.7.1 Stationary Coils
In addition to varnish treatment and vacuum pressure impregnation of stationary field coils, the wet winding method was added to indicate that it is also a treatment option.

3.8 Squirrel Cage and Amortisseur Windings
To help prevent performance issues with motors and generators, particularly when starting, the following caution was added “Synchronous rotors often have amortisseur bars of different materials.”

3.9 Shaping and Lacing of Stator Windings
Good practice guidance for replacing metal surge rings with surge rope is given in the new sentence “Metal surge rings can be replaced with surge rope of the same or larger diameter to avoid inductive heating or potential ground fault.”

3.11 Wedges
With the use of magnetic wedges in form wound stators becoming more prevalent, information and guidance regarding magnetic wedges was expanded on in this clause.  The revised sentence and a new sentence are:

Magnetic wedges should be replaced with equivalent or better magnetic properties magnetic wedges. Caution: Replacing magnetic wedges with nonmagnetic wedges can result in a winding temperature rise of 20°C or more as well as an increase in no-load current, and negatively affect motor performance.

The revised sentence, which added “or better” will be included in the applicable criterion in Item 13 of the revised Accreditation Checklist. Conformance to it will be effective January 2027.

4.2.2 Polarization Index (P.I.) Test
Because the polarization index test often does not apply to random windings the following paragraph addressing this, and providing an alternate test method, was added: This test may not apply to random winding machines since the absorption current becomes negligible in a matter of seconds. A 60/30 second IR ratio test may be performed, with an acceptance ratio of 1.5. (Reference: IEEE Std. 1068, 6.3.1l).

4.2.4 Form-Wound Stator Surge Tests
The following new sentence provides guidance for testing uncured coils so as to help prevent failure due to testing at too high a voltage: Test voltages are reduced for uncured coils and should be agreed upon in advance by the coil manufacturer, service center, and if required, the customer.

4.2.8 Phase Balance Test
The clause text was expanded to provide specific test parameters for the level of voltage to be applied and the time duration. The clause now reads: The phase balance test applies balanced reduced voltage, about 15-20% of rated voltage, 3-phase power to the stator and the current is measured and checked for balance. The test duration should not ex­ceed 5 minutes, and the expected test current should be approximately the rated current.

4.3.3 Armature Windings
Clarified the term “bar-to-bar” by identifying the two types of bar-to-bar test, the high-frequency bar-to-bar test and the low-resistance bar-to-bar test.

4.5.1 Speed
Provided guidance for test running a motor when rated frequency is not available by adding the sentence: When rated frequency is not available, test run at a proportional volts/Hz ratio, without exceeding rated voltage or maximum speed.

Conclusion
The efforts of the Technical Services Committee to revise and improve AR100 are a continual process. Within a year or two, the revision process will become an active agenda item for the TSC. One of the foremost goals with AR100 is to include as many good practices as possible. Further, when it is desired or necessary to add new good practices to the Accreditation Program, AR100 is the conduit. The reason for this approach is that AR100 is the primary source document for the EASA Accreditation Program.

Since AR100 is revised periodically it is a “living document.” Changes to AR100 not only aid with the Accreditation Program, its good practices and other guidance help enable service centers to provide quality repairs that maintain or at times improve rotating electrical apparatus reliability and energy efficiency.

Available Downloads

Cool advice on hot motors

Cool advice on hot motors

By Jim Bryan
EASA Technical Support Specialist (retired)

The effects of excessive temperature on motor performance are notorious. After moisture, they are the greatest contributor to bearing and winding failures. Understanding the source of increased temperature is key to correcting the problem and improving the reliability of your facility’s motor fleet.

Topics in this article cover:

  • Overload and service factor
  • Ventilation
  • Voltage variation
  • Electrical steel
  • Current density
  • Circulating currents
  • Harmonics

READ THE ARTICLE

Cool facts about cooling electric motors

Cool facts about cooling electric motors

Improvements in applications that fall outside the normal operating conditions

By Chuck Yung
EASA Senior Tecnical Support Specialist

The evolution of electric motor design as it pertains to cooling methods provides insights about better ways to cool machines in service. The array of methods engineers have devised to solve the same problems are fascinating yet reassuring because many things remain unchanged even after a century of progress. This article discusses how motors are cooled and how heat dissipation can be improved for applications that fall outside the normal operating conditions defined by the National Electrical Manufacturers Association (NEMA) Standard MG 1.

READ THE FULL ARTICLE

Cool facts about cooling electric motors

Cool facts about cooling electric motors

Whether old or new design, lowering temperatures based on same principles

Chuck Yung
EASA Senior Technical Support Specialist

I’ve often commented on how for­tunate we are to work on such a variety of electric motor designs. One day, you are working on a new design some designer has recently created, and the next day you are repairing a motor that could be in a museum. It’s fascinating to see the different ways engineers have devised to do the same thing, and yet reassuring to see how many things remain unchanged even after a century of electric motors. 

One aspect of electric motors that could be placed in both categories is the way an electric motor is cooled. This article takes a look at how motors are cooled and how we can improve cool­ing for some of the special applications we encounter.

Available Downloads

Fan law knowledge can help performance

Fan law knowledge can help performance

Chuck Yung 
EASA Technical Support Specialist 

Most of us involved in the repair of electrical equipment have a good understanding of how an electric motor works–especially the stator and ro­tor. But the fan can appear deceptively simple. Fans are pretty interesting, once we learn a few “affinity laws”—rules that also apply to blowers and impellers. This article will review some basic facts about fans that explain how small changes to a fan can make a BIG difference in the following critical areas: 

  • Volume of air moved
  • Static pressure
  • Load
  • Losses (efficiency)

These rules hold true for fan applications, im­pellers in pumping applications, and cooling fans on electric motors. When applied to the external fan of a TEFC (IP-54) motor, these rules offer some real opportunities for efficiency improvement. 

Available Downloads

How to Balance Overhung Fans

How to Balance Overhung Fans

Often an overhung fan is balanced in a single plane, only to find that the vibration has shifted to the outboard bearing. Attempts to use standard two-plane techniques may result in calculated correction weights that are very large and produce poor results. There are more effective ways to approach this common problem. This presentation shows a methodical approach and techniques for tackling this difficult balancing problem.

Target audience: This presentation is intended for field service balancing technicians, supervisors and managers.

Motor Winding Temperature and Detectors to Measure It

Motor Winding Temperature and Detectors to Measure It

This presentation begins with an overview of ambient, winding temperature rise, and winding temperature. It also covers factors for motor temperature rise limits such as motor size (medium or large), insulation class rating, service factor and the enclosure. The final part of the presentation addresses detectors for measuring winding temperature, namely thermostats, resistance temperature detectors (RTDs), thermocouples and thermistors.

Target audience: This presentation is most useful for service center winders, engineers, supervisors and managers. The content will be beneficial for beginners through highly-experienced persons.

Norma EASA AR100-2025: Práctica Recomendada para la Reparación de Máquinas Eléctricas Rotativas

Norma EASA AR100-2025: Práctica Recomendada para la Reparación de Máquinas Eléctricas Rotativas

EASA AR100-2025 coverLa Práctica Recomendada para la Reparación de Máquinas Eléctricas Rotativas está designada como ANSI/EASA AR100 e inicialmente fue aprobada como norma nacional americana en 1998. Desde entonces, ha sido revisada y aprobada cinco veces más en 2001, 2006, 2010, 2015, 2020 y ahora en el 2025.

La norma ANSI/EASA AR100 es una guía indispensable para la reparación de máquinas eléctricas rotativas. Su propósito es establecer prácticas recomendadas en cada etapa de los procesos de rebobinado y reconstrucción de aparatos eléctricos rotativos.

El alcance de este documento describe el registro de datos, las pruebas, el análisis y las directrices generales para la reparación de aparatos eléctricos rotativos de inducción, síncronos y de corriente continua. No pretende sustituir las instrucciones o especificaciones específicas del cliente o del fabricante de la máquina, ni las normas o prácticas recomendadas de la industria, aceptadas y aplicables.

Este documento debe complementarse con requisitos adicionales aplicables a aparatos eléctricos rotativos especializados, incluyendo, entre otros, máquinas antideflagrantes, a prueba de ignición por polvo y otras máquinas certificadas para ubicaciones peligrosas; y requisitos específicos o adicionales para motores herméticos, máquinas refrigeradas por hidrógeno, motores sumergibles, motores de tracción o motores de servicio nuclear de Clase 1E.

ANSI reconoce una sola norma por tema; por lo tanto, ANSI/EASA AR100 es la norma estadounidense para la reparación de aparatos eléctricos rotativos. Esta práctica recomendada es una publicación importante que debe distribuirse tanto internamente como a los clientes.

Descargar
Este documento está disponible para su descarga gratuita (ver el enlace a continuación).

DESCARGAR AR100-2025

Proceso de aprobación
El Comité de Servicios Técnicos (TSC) de EASA revisa la práctica recomendada y propone cambios; un grupo de consenso (anteriormente denominado grupo de consulta) aprueba y, con frecuencia, comenta las propuestas del TSC. Este grupo cuenta con representación de centros de servicio (productores), usuarios finales y personas con intereses generales. Según los requisitos de la American National Standards Institute (ANSI), debe haber una representación equilibrada entre los representantes del grupo de consenso. Tras un acuerdo dentre el grupo de consenso y el TSC, el documento revisado es aprobado por la Junta Directiva Internacional de EASA. Tras la aprobación de la Junta, se solicita a ANSI que apruebe la revisión como Norma Nacional Estadounidense. Todo el proceso se debe completar en un plazo de cinco años contados a partir de la última revisión. 

¿Qué hay nuevo en la versión 2025?
La edición 2025 de la AR100 contiene 72 revisiones, 48 de carácter sustantivo (técnico) y 24 de carácter editorial. En este artículo, nos centraremos en los cambios más significativos, indicados en el orden de las cláusulas, y en algunas de las razones que los justificaron. La única revisión de la AR100 que afectó a la Lista de Verificación del Programa de Certificación de EASA fue la de la cláusula 3.11, que se describe más adelante en la información correspondiente a dicha cláusula.

La única revisión del AR100 que afectó la Lista de Verificación del Programa de Acreditación fue clause 3.11.


1.1 Objetivo
Se añadió la frase “Aunque las reparaciones normalmente se realizan en un centro de servicio, este documento también aplica a las reparaciones in situ” Esto clarifica que la AR100 aplica tanto a reparaciones en los centros de servico como in situ. 

1.4 Condiciones de Evaluación e Investigación de Fallos
Se añadió al uso de la fotografía la frase "Las fotografías de todos los lados del equipo pueden ser útiles para registrar al momento de la recepción, el estado general, la ubicación de los accesorios y la configuración de la máquina, tanto para fines de registro como para compararlas durante la inspección final una vez completada la reparación", Esto no solo reconoce la importancia del uso de la fotografía, sino que también la justifica. 

1.6 Cables de Salida
Se añadió una oración que describe qué hacer si las marcas de los cables del cliente difieren de las normas NEMA o IEC. Esta es también la primera referencia del documento a la norma NEMA MG 00001, sucesora de la NEMA MG 1. 

2.1.2 Excentricidad Permitida
Las Tablas 2-3 (máquinas NEMA) y 2-4 (máquinas IEC) de tolerancia de excentricidad admisible para ejes de salida se reemplazaron por la “Tabla 2-3. RPM versus excentricidades permisibles”. Las tablas de excentricidades NEMA e IEC se basaban en las dimensiones del eje, y la tabla sustituta es más práctica y sencilla de usar, con tolerancias basadas en la velocidad del eje. 

2.2.2.1 Empuje Axial de los Cojinetes de Deslizamiento
Se amplió el tema del empuje axial de los cojinetes de deslizamiento para incluir el uso de acoplamientos con desplazamiento axial limitado y se añadió una nueva tabla con tolerancias para el juego y desplazamiento axial del rotor, denominada "Tabla 2-8. Juego y desplazamiento axial del rotor para máquinas de inducción horizontales con cojinetes de deslizamiento". 

2.5 Núcleos Laminados
Se agregó una buena práctica con la oración “Si se detectan puntos calientes, realice una prueba de pérdidas en el núcleo”. 

2.5.1 Partes Rotativas
Se proporcionan tolerancias de excentricidad independientes para máquinas de 2 y 4 polos o más en las dos frases siguientes: "La desviación del diámetro exterior del elemento rotativo con respecto a los muñones del eje donde se instalan los rodamientos no debe exceder el 5 % del entrehierro promedio para máquinas de 4 o más polos. Para máquinas de 2 polos, la desviación no deberá superar las 0,003" (0,08 mm)". La edición anterior utilizaba una tolerancia única, independientemente del número de polos. 

2.7 Anillos Rozantes
Se añadió una tolerancia para la desviación máxima total indicada para velocidades por debajo de 760 m/min (2500 pies/min), así como para velocidades inferiores a 1525 m/min (5000 pies/min) y superiores a 1525 m/min (5000 pies/min). La edición anterior ofrecía dos tolerancias: una para velocidades inferiores a 1525 m/min (5000 pies/ min) y otra para velocidades superiores a 1525 m/min (5000 pies/min). 

2.8.2 Ranurado y Biselado
Proporciona un buen método para biselar las barras del colector con la siguiente afirmación: "Ambos bordes de cada delga se deben biselar, ya sea manualmente o con un cepillo de nailon diseñado para tal fin. Esto minimiza las vibraciones y el ruido durante el funcionamiento y prolonga la vida útil de la escobilla". 

2.11 Ajuste de las Escobillas para Máquinas de Corriente Contínua
Se proporcionó una buena práctica que indicaba agregar puentes de compensación en todos los postes de escobillas de las máquinas de corriente contínua que no los tuvieran, con la siguiente advertencia: "Los postes de las escobillas de la misma polaridad deben estar conectados entre sí mediante puentes de compensación. Esto se aplica tanto a los bornes de escobilla positivos como a los negativos". Esto reduce la probabilidad de chispas en las escobillas debido a la diferencia de voltaje en los bornes de escobilla con la misma polaridad. 

3.3 Desmantelamiento de los Devanados
La oración “Para evitar degradación del aislamiento interlaminar y la distorsión de cualquiera de sus partes” fue reescrita como: “Para evitar degradación del aislamiento interlaminar y la distorsión de la carcasa del estator”. El cambio proporciona un enfoque y aclara que el control de la temperatura del núcleo tiene como objetivo evitar la distorsión de la carcasa del estator. 

3.6 Bobinas de estatores, rotores y armaduras
Se añade una buena práctica relacionada con el reemplazo de los aros/cordeles de refuerzo o soportes con la oración “Los aros/cordeles de refuerzo o soportes similares deben ser reemplazados tal como fueron encontrados” 

3.6.2 Bobinas de Pletina (Solera)
Para armonizar con el cambio hecho en 3.6 se borró la oración:"Para evitar su movimiento y distorsión, las bobinas deben estar atadas entre si y aseguradas a aros de sujeción u otros medios de soporte similares, tal como se considere necesario" 

3.7.1 Bobinas Estáticas
Adicionalmente al tratamiento con barniz o impreganación al vacio (VPI) se adicionó el método de enresinado para indicar que es otra opción. 

3.8 Bobinados de Amortiguación y Jaulas de Ardilla
Para ayudar a prevenir problemas de rendimiento con motores y generadores, particularmente al arrancar, se agregó la siguiente advertencia: "Los rotores síncronos suelen tener barras amortiguadoras de diferentes materiales" 

3.9 Moldeado y Atado de los Bobinados del Estator
En la nueva oración se proporciona una guía de buenas prácticas para reemplazar los aros o anillos de soporte metálicos por cordones: "Los aros o anillos de soporte metálicos se pueden reemplazar por cordones de al menos el mismo diámetro para evitar el calentamiento por inducción o posibles fallos a tierra". 

3.11 Cuñas
Dado el uso cada vez más frecuente de cuñas magnéticas en estatores de bobinas de pletina, se amplió la información y la orientación sobre ellas en esta cláusula. La oración revisada y la nueva frase son las siguientes: 

“Las cuñas magnéticas se deben reemplazar por cuñas con mejores propiedades magnéticas o equivalente. Precación: Cambiar cuñas magnéticas por otras no magnéticas puede provocar un aumento de la temperatura del bobinado de 20°C o más, así como también un incremento de la corriente en vacío, lo que afectará negativamente el rendimiento del motor”. 

La frase revisada, que añadió "o mejor", se incluirá en el criterio aplicable del punto 13 de la Lista de Comprobación de la Certificación revisada. Su cumplimiento entrará en vigor en enero de 2027. 

4.2.2 Prueba de índice de Polarización (I.P)
Ya que la prueba del índice de polarización no se suele aplicar a bobinados de alambre redondo, se añadió el siguiente párrafo que aborda este tema y proporciona un método de prueba alternativo:"Esta prueba podría no aplicar a las máquinas de alambre redondo, ya que la corriente de absorción se vuelve insignificante en cuestión de segundos. Se puede realizar una prueba de relación de resistencia de aislamiento de 60/30 segundos, con una relación de aceptación de 1,5. (Referencia: IEEE Std. 1068, 6.3.1l)". 

4.2.4 Pruebas de Impulso (Surge) en Estatores con Bobinas de Pletina (Solera)
La siguiente nueva oración proporciona orientación para probar bobinas sin curar a fin de ayudar a prevenir fallos debido a pruebas hechas con un voltaje demasiado alto: 

“Los niveles de prueba se reducen para las bobinas sin curar (green) y deben ser acordados con anticipación entre el fabricante de bobinas, el centro de servicio y, si es necesario, el cliente”.

4.2.8 Pruebas de Equilibrio entre Fases
El texto de la cláusula se amplió para proporcionar parámetros de prueba específicos para el nivel de voltaje aplicado y su duración. La cláusula ahora dice: "En la prueba de equilibrio de fases se aplica al estator un voltaje trifásico balanceado de un 15 a 20% la tensión nominal y se miden las corrientes para comprobar si están balanceadas. La duración de la prueba no debe exceder 5 minutos y la corriente esperada puede ser aproximadamente la nominal". 

4.3.3 Bobinados de Armadura
Se clarifica el término “delga-delga” identificando los dos tipos de pruebas delga-delga: Alta frecuencia y baja resistencia. 

4.5.1 Velocidad
Se proporcionó orientación para la prueba de funcionamiento de un motor cuando no se dispone de la frecuencia nominal, añadiendo la frase: "Si la frecuencia nominal no está disponible se puede utilizar una relación voltio/Hz proporcional, sin exceder el voltaje nominal o la velocidad máxima”. 

Conclusión
Los esfuerzos del Comité de Servicios Técnicos (TSC) para revisar y mejorar la AR100 son un proceso continuo. Dentro de uno o dos años, el proceso de revisión se convertirá en un tema activo en la agenda del TSC. Uno de los principales objetivos de la AR100 es incluir el mayor número posible de buenas prácticas. Además, cuando se desee o sea necesario añadir nuevas buenas prácticas al Programa de Certificación, la AR100 actúa como conducto. La razón de este enfoque es que la AR100 es el documento fuente principal del Programa de Certificación de EASA. 

Dado que la AR100 se revisa periódicamente, es un documento en constante evolución. Los cambios en la AR100 no solo contribuyen al Programa de Certificación, sino que sus buenas prácticas y otras directrices permiten a los centros de servicio realizar reparaciones de calidad que mantienen, e incluso mejoran, la confiabilidad y la eficiencia energética de las máquinas eléctricas rotativas.

Available Downloads

Principles of Medium & Large AC Motors, 1st Edition - IEC

Principles of Medium & Large AC Motors, 1st Edition - IEC

This version of Principles of Medium & Large AC Motors manual is now available to address applicable IEC standards and practices. This 360-page manual was developed by industry experts in Europe along with EASA's engineering team. (The "original" version of this book based on NEMA standards remains available as a separate document.)

This manual includes drawings, photos and extensive text and documentation on AC motors, including how they work, information on enclosures, construction on components and applications. Many of the principles included apply to all AC motors, especially those with accessories that are associated with larger machines in the past (such as encoders, RTDs, thermostats, space heaters and vibration sensors).

While the manual covers horizontal and vertical squirrel-cage induction motors in the 37 to 3,700 kW (300 to 5,000 hp) range, low- and medium-voltage, most of the principles covered apply to other sizes as well. 

This valuable instructional/resource manual is available in printed and downloadable versions, and focuses primarily on IEC motors.

Sections in the manual include:
(Download the PDF below for the complete Tables of Contents)

  • Motor nomenclature & definitions
  • Motor enclosures
  • Typical motor applications
  • Safety & handling considerations
  • Basic motor theory
  • Motor standards
  • Stators
  • Squirrel cage rotors
  • Shafts
  • Bearings & lubrication
  • Motor accessories & terminal boxes
  • Test & inspection procedures
  • Motor alignment, vibration & noise
  • Storage procedures
  • Synchronous machines

BUY A COPY FOR YOUR OFFICE

PRINTED BOOK DOWNLOADABLE PDF

This book is also available focusing on NEMA Standards — in both English and Español.

NEMA - English NEMA - Español

Available Downloads

Service factor: What is it and what does it do?

Service factor: What is it and what does it do?

Jim Bryan
EASA Technical Support Specialist (retired)

There are many misconceptions about Service Factor (SF) in the industry. Some feel it is meant for temporary excursions into overload conditions; others consider it to be an allowance for permanent overload. The truth is that it is neither. As defined in the EASA Technical Manual and NEMA MG1, the definition of service factor is:

"A multiplier which, when applied to rated power, indicates a permissible power loading that may be carried under the conditions specified for the service factor."

The NEMA MG1-2011 theory of SF says that a motor is thermally capable of overload to that point within the insulation class at normal service conditions.

Since any increase in load increases the current, this overload will increase the operating temperature of the motor. For every increase of 10ºC, the motor winding expected life is reduced by one-half. It does not matter what the source of that increase in temperature is; overload, poor ventilation, low voltage or high ambient temperature are just a few.

Available Downloads