Facebook Twitter LinkedIn YouTube Menu Search Arrow Right Arrow Left Arrow Down Arrow Up Home Arrow Next Arrow Previous RSS Icon Calendar Icon Warning Icon

ANSI/EASA AR100-2020 cover

ANSI/EASA Standard AR100-2020
ANSI/EASA AR100-2020: Recommended Practice for the Repair of Rotating Electrical Apparatus is a must-have guide to the repair of rotating electrical machines. It establishes recommended practices in each step of the rotating electrical apparatus rewinding and rebuilding processes.

LEARN MORE & DOWNLOAD

Questions?

For information about ANSI/EASA AR100 or questions about the work on this standard, contact:

Mike Howell, PE
EASA Technical Support Specialist
+1 314 993 2220
mhowell@easa.com

ANSI Accredited Standards Developer Information

Improvements in Energy Efficiency of Induction Motors via Magnetic Wedges

  • June 2012
  • Number of views: 4809
  • Article rating: No rating

Bill Finley and Tyler Gaerke
Siemens Industry, Inc., Norwood, OH

There is always a need to push to higher and higher efficiencies. This can be seen in the revisions to IEEE 841 which pushed efficiencies up to NEMA premium levels. DOE has continued to pass legislation increasing efficiencies to higher levels up to 500 HP. There has also been action recently to establish higher minimum efficiency levels on machines as large as 2500 HP. Motor manufacturers have been motivated to find creative ways to increase efficiency levels through optimization of manufacturing processes, designs, active material increase and better more efficient materials such as magnetic sticks.

To better understand the steps required, it is helpful to understand, how losses are generated and to identify the levers that reduce these significantly, all at an acceptable cost for the investment of the motor. Life cycle costs should also be investigated. 

This paper investigates the impact on the motor performance during starting and normal operation by employing magnetic wedges versus non-magnetic wedges and other potential design changes. The type of induction motor, open (ODP, WPII) or enclosed (TEFC), along with the number of poles, influences the effect on the motor these design changes may have.

Magnetic forces (stresses) acting on the wedges are also investigated in this paper. This paper also discusses qualification processes that are necessary in order to avoid failures and ensure reliable magnetic wedge systems.

This paper covers:

  • Designing and testing for NEMA and IEC premium efficiency levels
  • History of high efficiency standards activities
  • Industrial facility opportunities
  • Magnetic wedges (purpose)
  • Impact of magnetic wedges on motor performance
  • Experimental data for different magnetic wedges
  • Qualification of magnetic slot wedges
  • Designing with magnetic wedges

LOGIN TO DOWNLOAD THE PAPER



1Upvote 0Downvote
Rate this article:
No rating
Print


Comments are only visible to subscribers.

EASA Rewind Study cover

The Effect of Repair/Rewinding on Premium Efficiency/IE3 Motors
Tests prove Premium Efficiency/IE3 Motors can be rewound without degrading efficiency.

DOWNLOAD THE FULL RESULTS

BUY PRINTED COPIES

EASA Good Practice Guide

Good Practice Guide to Maintain Motor Efficiency
Based on the 2019 and 2003 Rewind Studies of premium efficiency, energy efficient, IE2 (formerly EF1) and IE3 motors

LEARN MORE & DOWNLOAD