Facebook Twitter LinkedIn YouTube Menu Search Arrow Right Arrow Left Arrow Down Arrow Up Home Arrow Next Arrow Previous RSS Icon Calendar Icon Warning Icon

ANSI/EASA AR100-2020 cover

ANSI/EASA Standard AR100-2020
ANSI/EASA AR100-2020: Recommended Practice for the Repair of Rotating Electrical Apparatus is a must-have guide to the repair of rotating electrical machines. It establishes recommended practices in each step of the rotating electrical apparatus rewinding and rebuilding processes.

LEARN MORE & DOWNLOAD

Questions?

For information about ANSI/EASA AR100 or questions about the work on this standard, contact:

Mike Howell, PE
EASA Technical Support Specialist
+1 314 993 2220
mhowell@easa.com

ANSI Accredited Standards Developer Information

EASA Technical Manual

  • September 2022
  • Number of views: 29976
  • Article rating: .6
FREE for Members of EASA

Revised September 2022!
EASA's most comprehensive technical document is available FREE to EASA members. Download the complete manual or just the sections you're interested in.

Vertical Motor Operation and Repair

  • June 2020
  • Number of views: 18308
  • Article rating: 5.0
FREE for Members of EASA

Vertical motors differ from horizontal motors in numerous ways, yet some view them as “just a horizontal motor turned on end.” The obvious differences are the (usually) thrust bearings, with arrangements varying from single- to three-thrust bearings with different orientations suited for specific load, rpm and applications. Less obvious differences are in the ventilation arrangements, shaft stiffness, degrees of protection and runout tolerances. This recording will cover those topics.

How To Wind Three-Phase Stators (Version 2)

Self-paced, interactive training for stators 600 volts or less

  • February 2017
  • Number of views: 16388
  • Article rating: 4.5

This EASA software is a valuable interactive training tool ideal for training your novice(s) ... and even experienced winders will learn from it. The CD teaches how to wind in a richly detailed, step-by-step approach which includes narrative, animations and video clips, with tests to assess student comprehension. 

Keeping it cool: A look at causes of motor overheating

  • March 2015
  • Number of views: 15846
  • Article rating: 5.0

We know that excessive temperature and moisture are the largest contributors to bearing and winding failures. Understanding the source of the increased temperature will help us to correct the problem and improve the machine’s life expectancy.

Increasing Motor Reliability

Regularly Checking the Operating Temperature of Critical Motors Will Help Extend Their Life and Prevent Costly, Unexpected Shutdowns

  • February 2020
  • Number of views: 13610
  • Article rating: 3.3

Regardless of the method used to detect winding temperature, the total, or hot spot, temperature is the real limit; and the lower it is, the better. Don’t let excessive heat kill your motors before their time.

Cool advice on hot motors

  • August 2015
  • Number of views: 12405
  • Article rating: No rating

The effects of excessive temperature on motor performance are notorious. After moisture, they are the greatest contributor to bearing and winding failures. Understanding the source of increased temperature is key to correcting the problem and improving the reliability of your facility’s motor fleet.

Cool facts about cooling electric motors

Improvements in applications that fall outside the normal operating conditions

  • November 2015
  • Number of views: 12304
  • Article rating: No rating

The evolution of electric motor design as it pertains to cooling methods provides insights about better ways to cool machines in service. The array of methods engineers have devised to solve the same problems are fascinating yet reassuring because many things remain unchanged even after a century of progress. This article discusses how motors are cooled and how heat dissipation can be improved for applications that fall outside the normal operating conditions defined by the National Electrical Manufacturers Association (NEMA) Standard MG 1.

Auxiliary cooling of electric motors (and other equipment)

  • January 2017
  • Number of views: 10937
  • Article rating: 5.0

Although the earliest practical DC motor was built by Moritz Jacobi in 1834, it was over the next 40 years that men like Thomas Davenport, Emil Stohrer and George Westinghouse brought DC machines into industrial use.  It’s inspiring to realize that work-ing DC motors have been around for over 160 years. For the past century, DC machines over 30 or 40 kW have been cooled in the same manner – by mounting a squirrel cage blower directly over the commutator.

Refrigeración auxiliar de motores eléctricos (y otros equipos)

  • January 2017
  • Number of views: 10027
  • Article rating: No rating

Motor Temperature Rise and Methods to Increase Winding Life

  • December 2018
  • Number of views: 9561
  • Article rating: 2.0

This webinar recording discusses:

  • Temperature rise (Method of detection, Insulation class, Enclosure, Service Factor)
  • Increasing winding life (Insulation class, Cooling system, Winding redesign)

EASA Rewind Study cover

The Effect of Repair/Rewinding on Premium Efficiency/IE3 Motors
Tests prove Premium Efficiency/IE3 Motors can be rewound without degrading efficiency.

DOWNLOAD THE FULL RESULTS

BUY PRINTED COPIES

EASA Good Practice Guide

Good Practice Guide to Maintain Motor Efficiency
Based on the 2019 and 2003 Rewind Studies of premium efficiency, energy efficient, IE2 (formerly EF1) and IE3 motors

LEARN MORE & DOWNLOAD